These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 11467524)

  • 21. An isotope coding strategy for proteomics involving both amine and carboxyl group labeling.
    Regnier FE
    Methods Mol Biol; 2007; 359():125-33. PubMed ID: 17484114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global internal standard technology for comparative proteomics.
    Chakraborty A; Regnier FE
    J Chromatogr A; 2002 Mar; 949(1-2):173-84. PubMed ID: 11999733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved method for differential expression proteomics using trypsin-catalyzed 18O labeling with a correction for labeling efficiency.
    Ramos-Fernández A; López-Ferrer D; Vázquez J
    Mol Cell Proteomics; 2007 Jul; 6(7):1274-86. PubMed ID: 17322307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In-Gel 18O labeling for improved identification of proteins from 2-DE Gel spots in comparative proteomic experiments.
    Broedel O; Krause E; Stephanowitz H; Schuemann M; Eravci M; Weist S; Brunkau C; Wittke J; Eravci S; Baumgartner A
    J Proteome Res; 2009 Jul; 8(7):3771-7. PubMed ID: 19425618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The use of a quantitative cysteinyl-peptide enrichment technology for high-throughput quantitative proteomics.
    Liu T; Qian WJ; Camp DG; Smith RD
    Methods Mol Biol; 2007; 359():107-24. PubMed ID: 17484113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of deuterium-labeled lysine for efficient protein identification and peptide de novo sequencing.
    Gu S; Pan S; Bradbury EM; Chen X
    Anal Chem; 2002 Nov; 74(22):5774-85. PubMed ID: 12463361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteome dynamics in complex organisms: using stable isotopes to monitor individual protein turnover rates.
    Doherty MK; Whitehead C; McCormack H; Gaskell SJ; Beynon RJ
    Proteomics; 2005 Feb; 5(2):522-33. PubMed ID: 15627957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Post-digestion ¹⁸O exchange/labeling for quantitative shotgun proteomics of membrane proteins.
    Ye X; Luke BT; Johann DJ; Chan KC; Prieto DA; Ono A; Veenstra TD; Blonder J
    Methods Mol Biol; 2012; 893():223-40. PubMed ID: 22665304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate peptide sequencing by post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Mo W; Takao T; Shimonishi Y
    Rapid Commun Mass Spectrom; 1997; 11(17):1829-34. PubMed ID: 9404033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Considerations for proteolytic labeling-optimization of 18O incorporation and prohibition of back-exchange.
    Storms HF; van der Heijden R; Tjaden UR; van der Greef J
    Rapid Commun Mass Spectrom; 2006; 20(23):3491-7. PubMed ID: 17072904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An approach to quantitative proteome analysis by labeling tryptophan residues.
    Kuyama H; Watanabe M; Toda C; Ando E; Tanaka K; Nishimura O
    Rapid Commun Mass Spectrom; 2003; 17(14):1642-50. PubMed ID: 12845591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simple procedure for effective quenching of trypsin activity and prevention of 18O-labeling back-exchange.
    Petritis BO; Qian WJ; Camp DG; Smith RD
    J Proteome Res; 2009 May; 8(5):2157-63. PubMed ID: 19222237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 18O-labeling quantitative proteomics using an ion trap mass spectrometer.
    Sakai J; Kojima S; Yanagi K; Kanaoka M
    Proteomics; 2005 Jan; 5(1):16-23. PubMed ID: 15744833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitation of ribonucleic acids using 18O labeling and mass spectrometry.
    Meng Z; Limbach PA
    Anal Chem; 2005 Mar; 77(6):1891-5. PubMed ID: 15762601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Precise peptide sequencing and protein quantification in the human proteome through in vivo lysine-specific mass tagging.
    Gu S; Pan S; Bradbury EM; Chen X
    J Am Soc Mass Spectrom; 2003 Jan; 14(1):1-7. PubMed ID: 12504328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new sample preparation method for the absolute quantitation of a target proteome using (18)O labeling combined with multiple reaction monitoring mass spectrometry.
    Li J; Zhou L; Wang H; Yan H; Li N; Zhai R; Jiao F; Hao F; Jin Z; Tian F; Peng B; Zhang Y; Qian X
    Analyst; 2015 Feb; 140(4):1281-90. PubMed ID: 25568899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein- versus peptide fractionation in the first dimension of two-dimensional high-performance liquid chromatography-matrix-assisted laser desorption/ionization tandem mass spectrometry for qualitative proteome analysis of tissue samples.
    Melchior K; Tholey A; Heisel S; Keller A; Lenhof HP; Meese E; Huber CG
    J Chromatogr A; 2010 Oct; 1217(40):6159-68. PubMed ID: 20810122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteomic analysis of ductal carcinoma of the breast using laser capture microdissection, LC-MS, and 16O/18O isotopic labeling.
    Zang L; Palmer Toy D; Hancock WS; Sgroi DC; Karger BL
    J Proteome Res; 2004; 3(3):604-12. PubMed ID: 15253443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification.
    Zhong H; Marcus SL; Li L
    J Am Soc Mass Spectrom; 2005 Apr; 16(4):471-81. PubMed ID: 15792716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A targeted proteomics approach to the rapid identification of bacterial cell mixtures by matrix-assisted laser desorption/ionization mass spectrometry.
    Warscheid B; Fenselau C
    Proteomics; 2004 Oct; 4(10):2877-92. PubMed ID: 15378756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.