BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 11467854)

  • 1. Novel bifunctional alkaline protease inhibitor: protease inhibitory activity as the biochemical basis of antifungal activity.
    Vernekar JV; Tanksale AM; Ghatge MS; Deshpande VV
    Biochem Biophys Res Commun; 2001 Jul; 285(4):1018-24. PubMed ID: 11467854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkaline protease inhibitor: a novel class of antifungal proteins against phytopathogenic fungi.
    Vernekar JV; Ghatge MS; Deshpande VV
    Biochem Biophys Res Commun; 1999 Sep; 262(3):702-7. PubMed ID: 10471389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for tryptophan in proximity to histidine and cysteine as essential to the active site of an alkaline protease.
    Tanksale AM; Vernekar JV; Ghatge MS; Deshpande VV
    Biochem Biophys Res Commun; 2000 Apr; 270(3):910-7. PubMed ID: 10772924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pearl millet cysteine protease inhibitor. Evidence for the presence of two distinct sites responsible for anti-fungal and anti-feedent activities.
    Joshi BN; Sainani MN; Bastawade KB; Deshpande VV; Gupta VS; Ranjekar PK
    Eur J Biochem; 1999 Oct; 265(2):556-63. PubMed ID: 10504386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteine protease inhibitor from pearl millet: a new class of antifungal protein.
    Joshi BN; Sainani MN; Bastawade KB; Gupta VS; Ranjekar PK
    Biochem Biophys Res Commun; 1998 May; 246(2):382-7. PubMed ID: 9610368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth inhibition of toxigenic fungi by a proteinaceous compound from Streptomyces sp. C/33-6.
    Fulgueira CL; Amigot SL; Magni C
    Curr Microbiol; 2004 Feb; 48(2):135-9. PubMed ID: 15057482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of a novel mung bean protease inhibitor with antipathogenic and anti-proliferative activities.
    Wang S; Lin J; Ye M; Ng TB; Rao P; Ye X
    Peptides; 2006 Dec; 27(12):3129-36. PubMed ID: 16971020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and characterisation of an aspartyl protease inhibitor (API-1) from Ancylostoma hookworms.
    Delaney A; Williamson A; Brand A; Ashcom J; Varghese G; Goud GN; Hawdon JM
    Int J Parasitol; 2005 Mar; 35(3):303-13. PubMed ID: 15722082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916.
    Liu Y; Chen Z; Ng TB; Zhang J; Zhou M; Song F; Lu F; Liu Y
    Peptides; 2007 Mar; 28(3):553-9. PubMed ID: 17129637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow-tight binding inhibition of pepsin by an aspartic protease inhibitor from Streptomyces sp. MBR04.
    Menon V; Rao M
    Int J Biol Macromol; 2012; 51(1-2):165-74. PubMed ID: 22522047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Amino acid composition and chemical functional group modification of protease (TI-Ajl) inhibitor from Actinomyces janthinus 118].
    Chermenskiĭ DN; Grishchenko VM; Andreeva NA
    Biokhimiia; 1979 Nov; 44(11):1981-7. PubMed ID: 121060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between protease activity and a sialoglycopeptide inhibitor isolated from bovine brain.
    Sharifi BG; Bascom CC; Fattaey H; Nash S; Johnson TC
    J Cell Biochem; 1986; 31(1):41-57. PubMed ID: 3522610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel bifunctional peptidic aspartic protease inhibitor inhibits chitinase A from Serratia marcescens: Kinetic analysis of inhibition and binding affinity.
    Kumar A; Rao M
    Biochim Biophys Acta; 2010 May; 1800(5):526-36. PubMed ID: 20138972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of a single-turn alpha-helix to the conformational stability and activity of the alkaline proteinase inhibitor of Pseudomonas aeruginosa.
    Gray RD; Trent JO
    Biochemistry; 2005 Feb; 44(7):2469-77. PubMed ID: 15709759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the local conformational change of alpha1-antitrypsin.
    Baek JH; Im H; Kang UB; Seong KM; Lee C; Kim J; Yu MH
    Protein Sci; 2007 Sep; 16(9):1842-50. PubMed ID: 17660256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physico-chemical and antifungal properties of protease inhibitors from Acacia plumosa.
    Lopes JL; Valadares NF; Moraes DI; Rosa JC; Araújo HS; Beltramini LM
    Phytochemistry; 2009 May; 70(7):871-9. PubMed ID: 19443001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency.
    Jaouadi B; Ellouz-Chaabouni S; Rhimi M; Bejar S
    Biochimie; 2008 Sep; 90(9):1291-305. PubMed ID: 18397761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel bifunctional inhibitor of xylanase and aspartic protease: implications for inhibition of fungal growth.
    Dash C; Ahmad A; Nath D; Rao M
    Antimicrob Agents Chemother; 2001 Jul; 45(7):2008-17. PubMed ID: 11408216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of the antifungal activity of wheat PR4 proteins.
    Bertini L; Caporale C; Testa M; Proietti S; Caruso C
    FEBS Lett; 2009 Sep; 583(17):2865-71. PubMed ID: 19647737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of protease inhibitors and lysozyme by hypochlorous acid: role of side-chain oxidation and protein unfolding in loss of biological function.
    Hawkins CL; Davies MJ
    Chem Res Toxicol; 2005 Oct; 18(10):1600-10. PubMed ID: 16533025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.