BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11467953)

  • 1. Identification of the high affinity Mn2+ binding site of bacteriophage lambda phosphoprotein phosphatase: effects of metal ligand mutations on electron paramagnetic resonance spectra and phosphatase activities.
    White DJ; Reiter NJ; Sikkink RA; Yu L; Rusnak F
    Biochemistry; 2001 Jul; 40(30):8918-29. PubMed ID: 11467953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mn2+ is a native metal ion activator for bacteriophage lambda protein phosphatase.
    Reiter TA; Reiter NJ; Rusnak F
    Biochemistry; 2002 Dec; 41(51):15404-9. PubMed ID: 12484780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of bacteriophage lambda protein phosphatase with Mn(II): evidence for the formation of a [Mn(II)]2 cluster.
    Rusnak F; Yu L; Todorovic S; Mertz P
    Biochemistry; 1999 May; 38(21):6943-52. PubMed ID: 10346916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical studies of the mono-Fe, Fe-Zn, and Fe-Fe metalloisoforms of bacteriophage lambda protein phosphatase.
    Reiter TA; Rusnak F
    Biochemistry; 2004 Jan; 43(3):782-90. PubMed ID: 14730983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and spectroscopic analyses of mutants of a conserved histidine in the metallophosphatases calcineurin and lambda protein phosphatase.
    Mertz P; Yu L; Sikkink R; Rusnak F
    J Biol Chem; 1997 Aug; 272(34):21296-302. PubMed ID: 9261141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of bacteriophage lambda protein phosphatase by organic and oxoanion inhibitors.
    Reiter NJ; White DJ; Rusnak F
    Biochemistry; 2002 Jan; 41(3):1051-9. PubMed ID: 11790129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The PPP-family protein phosphatases PrpA and PrpB of Salmonella enterica serovar Typhimurium possess distinct biochemical properties.
    Shi L; Kehres DG; Maguire ME
    J Bacteriol; 2001 Dec; 183(24):7053-7. PubMed ID: 11717262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of a Ser/Thr phosphatase. Identification of residues important in phosphoesterase substrate binding and catalysis.
    Zhuo S; Clemens JC; Stone RL; Dixon JE
    J Biol Chem; 1994 Oct; 269(42):26234-8. PubMed ID: 7929339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the bacteriophage lambda Ser/Thr protein phosphatase with sulfate ion bound in two coordination modes.
    Voegtli WC; White DJ; Reiter NJ; Rusnak F; Rosenzweig AC
    Biochemistry; 2000 Dec; 39(50):15365-74. PubMed ID: 11112522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sulfhydryl regents on the activity of lambda Ser/Thr phosphoprotein phosphatase and inhibition of the enzyme by zinc ion.
    Zhuo S; Dixon JE
    Protein Eng; 1997 Dec; 10(12):1445-52. PubMed ID: 9543006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and biochemical properties of a protein serine/threonine phosphatase encoded by bacteriophage lambda.
    Barik S
    Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10633-7. PubMed ID: 8248155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the function of conserved residues in the serine/threonine phosphatase PP2Calpha.
    Jackson MD; Fjeld CC; Denu JM
    Biochemistry; 2003 Jul; 42(28):8513-21. PubMed ID: 12859198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II).
    Buy C; Girault G; Zimmermann JL
    Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants for substrate specificity of the bacterial PP2C protein phosphatase tPphA from Thermosynechococcus elongatus.
    Su J; Forchhammer K
    FEBS J; 2013 Jan; 280(2):694-707. PubMed ID: 22212593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of site-directed mutants locates a non-redox-active metal near the active site of cytochrome c oxidase of Rhodobacter sphaeroides.
    Hosler JP; Espe MP; Zhen Y; Babcock GT; Ferguson-Miller S
    Biochemistry; 1995 Jun; 34(23):7586-92. PubMed ID: 7779804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center.
    Khangulov SV; Sossong TM; Ash DE; Dismukes GC
    Biochemistry; 1998 Jun; 37(23):8539-50. PubMed ID: 9622506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asp537 and Asp812 in bacteriophage T7 RNA polymerase as metal ion-binding sites studied by EPR, flow-dialysis, and transcription.
    Woody AY; Eaton SS; Osumi-Davis PA; Woody RW
    Biochemistry; 1996 Jan; 35(1):144-52. PubMed ID: 8555168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analysis of the catalytic subunit of muscle protein phosphatase-1.
    Zhang J; Zhang Z; Brew K; Lee EY
    Biochemistry; 1996 May; 35(20):6276-82. PubMed ID: 8639569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic implications for the formation of the diiron cluster in ribonucleotide reductase provided by quantitative EPR spectroscopy.
    Pierce BS; Elgren TE; Hendrich MP
    J Am Chem Soc; 2003 Jul; 125(29):8748-59. PubMed ID: 12862469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.