BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11467958)

  • 1. Kinetic and calorimetric evidence for two distinct scaffolding protein binding populations within the bacteriophage P22 procapsid.
    Parker MH; Brouillette CG; Prevelige PE
    Biochemistry; 2001 Jul; 40(30):8962-70. PubMed ID: 11467958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional domains of bacteriophage P22 scaffolding protein.
    Parker MH; Casjens S; Prevelige PE
    J Mol Biol; 1998 Aug; 281(1):69-79. PubMed ID: 9680476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly specific salt bridges govern bacteriophage P22 icosahedral capsid assembly: identification of the site in coat protein responsible for interaction with scaffolding protein.
    Cortines JR; Motwani T; Vyas AA; Teschke CM
    J Virol; 2014 May; 88(10):5287-97. PubMed ID: 24600011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of additional coat-scaffolding interactions in a bacteriophage P22 mutant defective in maturation.
    Thuman-Commike PA; Greene B; Jakana J; McGough A; Prevelige PE; Chiu W
    J Virol; 2000 Apr; 74(8):3871-3. PubMed ID: 10729161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A helical coat protein recognition domain of the bacteriophage P22 scaffolding protein.
    Tuma R; Parker MH; Weigele P; Sampson L; Sun Y; Krishna NR; Casjens S; Thomas GJ; Prevelige PE
    J Mol Biol; 1998 Aug; 281(1):81-94. PubMed ID: 9680477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The energetic contributions of scaffolding and coat proteins to the assembly of bacteriophage procapsids.
    Zlotnick A; Suhanovsky MM; Teschke CM
    Virology; 2012 Jun; 428(1):64-9. PubMed ID: 22520942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteriophage P22 scaffolding protein forms oligomers in solution.
    Parker MH; Stafford WF; Prevelige PE
    J Mol Biol; 1997 May; 268(3):655-65. PubMed ID: 9171289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of intermediates and kinetic control during assembly of bacteriophage P22 procapsid.
    Tuma R; Tsuruta H; French KH; Prevelige PE
    J Mol Biol; 2008 Sep; 381(5):1395-406. PubMed ID: 18582476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic interactions drive scaffolding/coat protein binding and procapsid maturation in bacteriophage P22.
    Parker MH; Prevelige PE
    Virology; 1998 Oct; 250(2):337-49. PubMed ID: 9792844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffolding mutants identifying domains required for P22 procapsid assembly and maturation.
    Greene B; King J
    Virology; 1996 Nov; 225(1):82-96. PubMed ID: 8918536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Molecular Staple: D-Loops in the I Domain of Bacteriophage P22 Coat Protein Make Important Intercapsomer Contacts Required for Procapsid Assembly.
    D'Lima NG; Teschke CM
    J Virol; 2015 Oct; 89(20):10569-79. PubMed ID: 26269173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular genetics of bacteriophage P22 scaffolding protein's functional domains.
    Weigele PR; Sampson L; Winn-Stapley D; Casjens SR
    J Mol Biol; 2005 May; 348(4):831-44. PubMed ID: 15843016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A P22 scaffold protein mutation increases the robustness of head assembly in the presence of excess portal protein.
    Moore SD; Prevelige PE
    J Virol; 2002 Oct; 76(20):10245-55. PubMed ID: 12239300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding bacteriophage P22 assembly: identification of two charged residues in scaffolding protein responsible for coat protein interaction.
    Cortines JR; Weigele PR; Gilcrease EB; Casjens SR; Teschke CM
    Virology; 2011 Dec; 421(1):1-11. PubMed ID: 21974803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of virus assembly probed by Raman spectroscopy: the icosahedral bacteriophage P22.
    Tuma R; Thomas GJ
    Biophys Chem; 1997 Oct; 68(1-3):17-31. PubMed ID: 9468607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of multi-component spherical virus assembly: scaffolding protein contributes to the global stability of phage P22 procapsids.
    Parent KN; Zlotnick A; Teschke CM
    J Mol Biol; 2006 Jun; 359(4):1097-106. PubMed ID: 16697406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of scaffolding-directed virus assembly suggested by comparison of scaffolding-containing and scaffolding-lacking P22 procapsids.
    Thuman-Commike PA; Greene B; Malinski JA; Burbea M; McGough A; Chiu W; Prevelige PE
    Biophys J; 1999 Jun; 76(6):3267-77. PubMed ID: 10354452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of subunit structural changes accompanying assembly of the bacteriophage P22 procapsid.
    Tuma R; Tsuruta H; Benevides JM; Prevelige PE; Thomas GJ
    Biochemistry; 2001 Jan; 40(3):665-74. PubMed ID: 11170383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of scaffolding subunits within the P22 procapsid lattice.
    Greene B; King J
    Virology; 1994 Nov; 205(1):188-97. PubMed ID: 7975215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural transitions in the scaffolding and coat proteins of P22 virus during assembly and disassembly.
    Tuma R; Prevelige PE; Thomas GJ
    Biochemistry; 1996 Apr; 35(14):4619-27. PubMed ID: 8605213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.