These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11468285)

  • 1. Cysteine substitutions reveal dual functions of the amino-terminal tail in cystic fibrosis transmembrane conductance regulator channel gating.
    Fu J; Kirk KL
    J Biol Chem; 2001 Sep; 276(38):35660-8. PubMed ID: 11468285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating.
    Fu J; Ji HL; Naren AP; Kirk KL
    J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels.
    Chaves LA; Gadsby DC
    J Gen Physiol; 2015 Apr; 145(4):261-83. PubMed ID: 25825169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation.
    Gao X; Bai Y; Hwang TC
    Biophys J; 2013 Feb; 104(4):786-97. PubMed ID: 23442957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR; Song B; McCarty NA
    J Biol Chem; 2005 Dec; 280(51):41997-2003. PubMed ID: 16227620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the juxtamembrane region of cytoplasmic loop 3 in the gating and conductance of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    Biochemistry; 2012 May; 51(19):3971-81. PubMed ID: 22545782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.
    Fatehi M; Linsdell P
    J Membr Biol; 2009 Apr; 228(3):151-64. PubMed ID: 19381710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2010 Sep; 136(3):293-309. PubMed ID: 20805575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
    Qian F; El Hiani Y; Linsdell P
    Pflugers Arch; 2011 Oct; 462(4):559-71. PubMed ID: 21796338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation, independent of charge, in the R domain affects cystic fibrosis transmembrane conductance regulator channel openings.
    Xie J; Zhao J; Davis PB; Ma J
    Biophys J; 2000 Mar; 78(3):1293-305. PubMed ID: 10692317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CFTR: covalent modification of cysteine-substituted channels expressed in Xenopus oocytes shows that activation is due to the opening of channels resident in the plasma membrane.
    Liu X; Smith SS; Sun F; Dawson DC
    J Gen Physiol; 2001 Oct; 118(4):433-46. PubMed ID: 11585853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate.
    Li MS; Demsey AF; Qi J; Linsdell P
    Br J Pharmacol; 2009 Jul; 157(6):1065-71. PubMed ID: 19466983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains.
    Csanády L; Chan KW; Seto-Young D; Kopsco DC; Nairn AC; Gadsby DC
    J Gen Physiol; 2000 Sep; 116(3):477-500. PubMed ID: 10962022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator.
    Akabas MH
    Biochemistry; 1998 Sep; 37(35):12233-40. PubMed ID: 9724537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine modification alters voltage- and Ca(2+)-dependent gating of large conductance (BK) potassium channels.
    Zhang G; Horrigan FT
    J Gen Physiol; 2005 Feb; 125(2):213-36. PubMed ID: 15684095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Wang W; El Hiani Y; Linsdell P
    J Gen Physiol; 2011 Aug; 138(2):165-78. PubMed ID: 21746847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular cysteines of the cystic fibrosis transmembrane conductance regulator (CFTR) modulate channel gating.
    Ketchum CJ; Yue H; Alessi KA; Devidas S; Guggino WB; Maloney PC
    Cell Physiol Biochem; 2002; 12(1):1-8. PubMed ID: 11914543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct Mg(2+)-dependent steps rate limit opening and closing of a single CFTR Cl(-) channel.
    Dousmanis AG; Nairn AC; Gadsby DC
    J Gen Physiol; 2002 Jun; 119(6):545-59. PubMed ID: 12034762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl
    Chen JH; Xu W; Sheppard DN
    J Physiol; 2017 Feb; 595(4):1059-1076. PubMed ID: 27779763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.