BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 11468550)

  • 1. Characteristics of immunoglobulin gene usage of the xenoantibody binding to gal-alpha(1,3)gal target antigens in the gal knockout mouse.
    Nozawa S; Xing PX; Wu GD; Gochi E; Kearns-Jonker M; Swensson J; Starnes VA; Sandrin MS; McKenzie IF; Cramer DV
    Transplantation; 2001 Jul; 72(1):147-55. PubMed ID: 11468550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The anti-non-gal xenoantibody response to xenoantigens on gal knockout pig cells is encoded by a restricted number of germline progenitors.
    Kiernan K; Harnden I; Gunthart M; Gregory C; Meisner J; Kearns-Jonker M
    Am J Transplant; 2008 Sep; 8(9):1829-39. PubMed ID: 18671678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of anti-Gal immunoglobulin genes in naïve and stimulated Gal knockout mice.
    Xu H; Sharma A; Chen L; Harrison C; Wei Y; Chong AS; Logan JS; Byrne GW
    Transplantation; 2001 Dec; 72(11):1817-25. PubMed ID: 11740394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genes coding evolutionary novel anti-carbohydrate antibodies: studies on anti-Gal production in alpha 1,3galactosyltransferase knock out mice.
    Chen ZC; Radic MZ; Galili U
    Mol Immunol; 2000 Jun; 37(8):455-66. PubMed ID: 11090880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular basis for galalpha(1,3)gal expression in animals with a deletion of the alpha1,3galactosyltransferase gene.
    Milland J; Christiansen D; Lazarus BD; Taylor SG; Xing PX; Sandrin MS
    J Immunol; 2006 Feb; 176(4):2448-54. PubMed ID: 16456004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The human antibody response to porcine xenoantigens is encoded by IGHV3-11 and IGHV3-74 IgVH germline progenitors.
    Kearns-Jonker M; Swensson J; Ghiuzeli C; Chu W; Osame Y; Starnes V; Cramer DV
    J Immunol; 1999 Oct; 163(8):4399-412. PubMed ID: 10510381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbohydrate residues downstream of the terminal Galalpha(1,3)Gal epitope modulate the specificity of xenoreactive antibodies.
    Milland J; Yuriev E; Xing PX; McKenzie IF; Ramsland PA; Sandrin MS
    Immunol Cell Biol; 2007; 85(8):623-32. PubMed ID: 17724458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The xenoantibody response and immunoglobulin gene expression profile of cynomolgus monkeys transplanted with hDAF-transgenic porcine hearts.
    Zahorsky-Reeves JL; Kearns-Jonker MK; Lam TT; Jackson JR; Morris RE; Starnes VA; Cramer DV
    Xenotransplantation; 2007 Mar; 14(2):135-44. PubMed ID: 17381688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genes coding for anti-Gal in knock-out mice for the alpha1, 3Galactosyltransferase gene: analysis by hybridomas.
    Chen ZC; Galili U
    Transplant Proc; 2000 Aug; 32(5):846-7. PubMed ID: 10936238
    [No Abstract]   [Full Text] [Related]  

  • 10. The anti-nonGal xenoantibody response to alpha1,3-galactosyltransferase gene knockout pig xenografts.
    Harnden I; Kiernan K; Kearns-Jonker M
    Curr Opin Organ Transplant; 2010 Apr; 15(2):207-11. PubMed ID: 20075731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similarities in the immunoglobulin response and VH gene usage in rhesus monkeys and humans exposed to porcine hepatocytes.
    Zahorsky-Reeves JL; Gregory CR; Cramer DV; Patanwala IY; Kyles AE; Borie DC; Kearns-Jonker MK
    BMC Immunol; 2006 Mar; 7():3. PubMed ID: 16549031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequences of the VH and VL regions of murine monoclonal antibodies against 3-fucosyllactosamine.
    Kimura H; Cook R; Meek K; Umeda M; Ball E; Capra JD; Marcus DM
    J Immunol; 1988 Feb; 140(4):1212-7. PubMed ID: 2893825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human anti-Gal heavy chain genes. Preferential use of VH3 and the presence of somatic mutations.
    Wang L; Radic MZ; Galili U
    J Immunol; 1995 Aug; 155(3):1276-85. PubMed ID: 7543518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. α1,3Galactosyltransferase knockout pigs produce the natural anti-Gal antibody and simulate the evolutionary appearance of this antibody in primates.
    Galili U
    Xenotransplantation; 2013; 20(5):267-76. PubMed ID: 23968556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elimination of anti-Gal B cells by alpha-Gal ricin1.
    Tanemura M; Ogawa H; Yin DP; Chen ZC; DiSesa VJ; Galili U
    Transplantation; 2002 Jun; 73(12):1859-68. PubMed ID: 12131678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xenotransplantation and ABO incompatible transplantation: the similarities they share.
    Galili U
    Transfus Apher Sci; 2006 Aug; 35(1):45-58. PubMed ID: 16905361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of α-Gal epitope, anti-Gal antibody, α1,3 galactosyltransferase and its clinical exploitation (Review).
    Huai G; Qi P; Yang H; Wang Y
    Int J Mol Med; 2016 Jan; 37(1):11-20. PubMed ID: 26531137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1,3-galactose reduce the humoral barrier to xenotransplantation.
    Lutz AJ; Li P; Estrada JL; Sidner RA; Chihara RK; Downey SM; Burlak C; Wang ZY; Reyes LM; Ivary B; Yin F; Blankenship RL; Paris LL; Tector AJ
    Xenotransplantation; 2013; 20(1):27-35. PubMed ID: 23384142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the variable regions of a chimpanzee monoclonal antibody with potent neutralizing activity against HIV-1.
    Vijh-Warrier S; Murphy E; Yokoyama I; Tilley SA
    Mol Immunol; 1995 Oct; 32(14-15):1081-92. PubMed ID: 8544858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of an anti-idiotypic antibody that defines a B-cell subset(s) producing xenoantibodies in primates.
    Fischer-Lougheed J; Gregory C; White Z; Shulkin I; Gunthart M; Kearns-Jonker M
    Immunology; 2008 Mar; 123(3):390-7. PubMed ID: 17916162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.