BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 11468821)

  • 1. The influence of clay mineralogy on the mobility of radiocaesium in upland soils of NW Italy.
    Facchinelli A; Gallini L; Barberis E; Magnoni M; Hursthouse AS
    J Environ Radioact; 2001; 56(3):299-307. PubMed ID: 11468821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments.
    Dzene L; Ferrage E; Viennet JC; Tertre E; Hubert F
    Sci Rep; 2017 Feb; 7():43187. PubMed ID: 28233805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migration and bioavailability of (137)Cs in forest soil of southern Germany.
    Konopleva I; Klemt E; Konoplev A; Zibold G
    J Environ Radioact; 2009 Apr; 100(4):315-21. PubMed ID: 19167790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils.
    Uematsu S; Smolders E; Sweeck L; Wannijn J; Van Hees M; Vandenhove H
    Sci Total Environ; 2015 Aug; 524-525():148-56. PubMed ID: 25897723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of clay content and wetting-and-drying on radiocaesium behaviour in a peat and a peaty podzol.
    Rosén K; Shand CA; Haak E; Cheshire MV
    Sci Total Environ; 2006 Sep; 368(2-3):795-803. PubMed ID: 16626782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of radiocesium fixation potentials on
    Fujii K; Yamaguchi N; Imamura N; Kobayashi M; Kaneko S; Takahashi M
    J Environ Radioact; 2019 Mar; 198():126-134. PubMed ID: 30605859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of zeolite and vermiculite addition on exchangeable radiocaesium in soil with accelerated ageing.
    Yamaguchi N; Hikono A; Saito T
    J Environ Radioact; 2019 Jul; 203():18-24. PubMed ID: 30844680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible role of organic matter in radiocaesium adsorption in soils.
    Staunton S; Dumat C; Zsolnay A
    J Environ Radioact; 2002; 58(2-3):163-73. PubMed ID: 11814164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of Cesium on smectite-rich clays from the Bohemian Massif (Czech Republic) and their mixtures with sand.
    Vejsada J; Jelínek E; Randa Z; Hradil D; Prikryl R
    Appl Radiat Isot; 2005 Jan; 62(1):91-6. PubMed ID: 15498690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiocesium distribution in aggregate-size fractions of cropland and forest soils affected by the Fukushima nuclear accident.
    Koarashi J; Nishimura S; Atarashi-Andoh M; Matsunaga T; Sato T; Nagao S
    Chemosphere; 2018 Aug; 205():147-155. PubMed ID: 29689528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An overview of the effect of organic matter on soil-radiocaesium interaction: implications in root uptake.
    Rigol A; Vidal M; Rauret G
    J Environ Radioact; 2002; 58(2-3):191-216. PubMed ID: 11814166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive barriers for 137Cs retention.
    Krumhansl JL; Brady PV; Anderson HL
    J Contam Hydrol; 2001 Feb; 47(2-4):233-40. PubMed ID: 11288579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land.
    Gommers A; Gäfvert T; Smolders E; Merckx R; Vandenhove H
    J Environ Radioact; 2005; 78(3):267-87. PubMed ID: 15511563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory experiments to predict changes in radiocaesium root uptake after flooding events.
    Camps M; Hillier S; Vidal M; Rauret G
    J Environ Radioact; 2003; 67(3):247-59. PubMed ID: 12691722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of factors determining the biological availability of 137Cs in forest ecosystem soils].
    Fesenko SV; Sanzharova NI; Spiridonov SI; Sukhova NV; Avila R; Klein D
    Radiats Biol Radioecol; 2002; 42(4):448-56. PubMed ID: 12395784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity concentration of caesium-137 in agricultural soils.
    Aslani MA; Aytas S; Akyil S; Yaprak G; Yener G; Eral M
    J Environ Radioact; 2003; 65(2):131-45. PubMed ID: 12527231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative clay mineralogy predicts radiocesium bioavailability to ryegrass grown on reconstituted soils.
    Vanheukelom M; Sweeck L; Van Hees M; Weyns N; Van Orshoven J; Smolders E
    Sci Total Environ; 2023 May; 873():162372. PubMed ID: 36828067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relevance of Radiocaesium Interception Potential (RIP) on a worldwide scale to assess soil vulnerability to 137Cs contamination.
    Vandebroek L; Van Hees M; Delvaux B; Spaargaren O; Thiry Y
    J Environ Radioact; 2012 Feb; 104():87-93. PubMed ID: 21963466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiocesium sorption in relation to clay mineralogy of paddy soils in Fukushima, Japan.
    Nakao A; Ogasawara S; Sano O; Ito T; Yanai J
    Sci Total Environ; 2014 Jan; 468-469():523-9. PubMed ID: 24055668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desorption techniques for determination of metals mobility in soils.
    Bartos P; Macásek F
    ScientificWorldJournal; 2002 Mar; 2():573-7. PubMed ID: 12805984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.