These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 11469)

  • 1. Conductimetric investigation of erythrocyte behaviour during shear flow of concentrated suspensions through a large tube.
    Dellimore JW
    Proc R Soc Lond B Biol Sci; 1976 Jun; 193(1113):359-85. PubMed ID: 11469
    [No Abstract]   [Full Text] [Related]  

  • 2. Heat transport in laminar flow of erythrocyte suspensions.
    Ahuja AS
    J Appl Physiol; 1975 Jul; 39(1):86-92. PubMed ID: 1150598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelasticity of packed erythrocyte suspensions subjected to low amplitude oscillatory deformation.
    Drasler WJ; Smith CM; Keller KH
    Biophys J; 1987 Sep; 52(3):357-65. PubMed ID: 3651555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood viscosity modelling: influence of aggregate network dynamics under transient conditions.
    Kaliviotis E; Yianneskis M
    Biorheology; 2011; 48(2):127-47. PubMed ID: 21811017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation.
    Reinke W; Gaehtgens P; Johnson PC
    Am J Physiol; 1987 Sep; 253(3 Pt 2):H540-7. PubMed ID: 3631291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction.
    Ismailov RM
    Theor Biol Med Model; 2005 Mar; 2():13. PubMed ID: 15799779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary penetration failure of blood suspensions.
    Zhou R; Chang HC
    J Colloid Interface Sci; 2005 Jul; 287(2):647-56. PubMed ID: 15925633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in viscosity of low shear rates and viscoelastic properties of oxidative erythrocyte suspensions.
    Chung TW; Ho CP
    Clin Hemorheol Microcirc; 1999; 21(2):99-103. PubMed ID: 10599593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Rheological characteristics of preserved blood and of an erythrocyte mass].
    Agranenko VA; Firsov NN; Poliakova LP; Matvienko VP
    Probl Gematol Pereliv Krovi; 1981 May; 26(5):24-8. PubMed ID: 7255361
    [No Abstract]   [Full Text] [Related]  

  • 10. The relationship of plasma fibrinogen, erythrocyte flexibility and blood viscosity.
    Dupont PA; Sirs JA
    Thromb Haemost; 1977 Oct; 38(3):660-7. PubMed ID: 579511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red blood cell deformability and aggregation behaviour in different animal species.
    Plasenzotti R; Stoiber B; Posch M; Windberger U
    Clin Hemorheol Microcirc; 2004; 31(2):105-11. PubMed ID: 15310945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear thinning and shear thickening of a confined suspension of vesicles.
    Nait Ouhra A; Farutin A; Aouane O; Ez-Zahraouy H; Benyoussef A; Misbah C
    Phys Rev E; 2018 Jan; 97(1-1):012404. PubMed ID: 29448354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. INFLUENCE OF FIBRINOGEN ON FLOW PROPERTIES OF ERYTHROCYTE SUSPENSIONS.
    WELLS RE; GAWRONSKI TH; COX PJ; PERERA RD
    Am J Physiol; 1964 Nov; 207():1035-40. PubMed ID: 14237445
    [No Abstract]   [Full Text] [Related]  

  • 14. [The lack of correlation between erythrocyte filtration parameters and other hemorrheological parameters].
    Manescalchi PG; Morini R; Pasquini G; Albanese B
    Ric Clin Lab; 1983; 13 Suppl 3():337-40. PubMed ID: 6673010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Rheology of erythrocytes].
    Matsunobu Y
    Kokyu To Junkan; 1973 Feb; 21(2):96-103. PubMed ID: 4569021
    [No Abstract]   [Full Text] [Related]  

  • 16. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What can we learn from Einstein and Arrhenius about the optimal flow of our blood?
    Schuster S; Stark H
    Biochim Biophys Acta; 2014 Jan; 1840(1):271-6. PubMed ID: 24021886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile.
    Stoltz JF; Donner M
    Schweiz Med Wochenschr Suppl; 1991; 43():41-9. PubMed ID: 1843037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic investigation of erythrocyte deformation dynamics.
    Zhao R; Antaki JF; Naik T; Bachman TN; Kameneva MV; Wu ZJ
    Biorheology; 2006; 43(6):747-65. PubMed ID: 17148857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions.
    McKay CB; Meiselman HJ
    Am J Physiol; 1988 Feb; 254(2 Pt 2):H238-49. PubMed ID: 3344815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.