BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

593 related articles for article (PubMed ID: 11469856)

  • 1. Identification of nucleophosmin/B23, an acidic nucleolar protein, as a stimulatory factor for in vitro replication of adenovirus DNA complexed with viral basic core proteins.
    Okuwaki M; Iwamatsu A; Tsujimoto M; Nagata K
    J Mol Biol; 2001 Aug; 311(1):41-55. PubMed ID: 11469856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coiled-coil structure-mediated dimerization of template activating factor-I is critical for its chromatin remodeling activity.
    Miyaji-Yamaguchi M; Okuwaki M; Nagata K
    J Mol Biol; 1999 Jul; 290(2):547-57. PubMed ID: 10390352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding modes of the precursor of adenovirus major core protein VII to DNA and template activating factor I: implication for the mechanism of remodeling of the adenovirus chromatin.
    Gyurcsik B; Haruki H; Takahashi T; Mihara H; Nagata K
    Biochemistry; 2006 Jan; 45(1):303-13. PubMed ID: 16388607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and functional interaction between a nucleolar protein nucleophosmin/B23 and adenovirus basic core proteins.
    Samad MA; Okuwaki M; Haruki H; Nagata K
    FEBS Lett; 2007 Jul; 581(17):3283-8. PubMed ID: 17602943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation-dependent migration of retinoblastoma protein into the nucleolus triggered by binding to nucleophosmin/B23.
    Takemura M; Ohoka F; Perpelescu M; Ogawa M; Matsushita H; Takaba T; Akiyama T; Umekawa H; Furuichi Y; Cook PR; Yoshida S
    Exp Cell Res; 2002 Jun; 276(2):233-41. PubMed ID: 12027453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional domains of template-activating factor-I as a protein phosphatase 2A inhibitor.
    Saito S; Miyaji-Yamaguchi M; Shimoyama T; Nagata K
    Biochem Biophys Res Commun; 1999 Jun; 259(2):471-5. PubMed ID: 10362532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Template activating factor-I remodels the chromatin structure and stimulates transcription from the chromatin template.
    Okuwaki M; Nagata K
    J Biol Chem; 1998 Dec; 273(51):34511-8. PubMed ID: 9852120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Default assembly of early adenovirus chromatin.
    Spector DJ
    Virology; 2007 Mar; 359(1):116-25. PubMed ID: 17034827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone.
    Okuwaki M; Matsumoto K; Tsujimoto M; Nagata K
    FEBS Lett; 2001 Oct; 506(3):272-6. PubMed ID: 11602260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. B23/nucleophosmin is involved in regulation of adenovirus chromatin structure at late infection stages, but not in virus replication and transcription.
    Samad MA; Komatsu T; Okuwaki M; Nagata K
    J Gen Virol; 2012 Jun; 93(Pt 6):1328-1338. PubMed ID: 22337638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable co-occupancy of transcription factors and histones at the HIV-1 enhancer.
    Steger DJ; Workman JL
    EMBO J; 1997 May; 16(9):2463-72. PubMed ID: 9171359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatitis C virus core protein recruits nucleolar phosphoprotein B23 and coactivator p300 to relieve the repression effect of transcriptional factor YY1 on B23 gene expression.
    Mai RT; Yeh TS; Kao CF; Sun SK; Huang HH; Wu Lee YH
    Oncogene; 2006 Jan; 25(3):448-62. PubMed ID: 16170350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly and disassembly of nucleosome core particles containing histone variants by human nucleosome assembly protein I.
    Okuwaki M; Kato K; Shimahara H; Tate S; Nagata K
    Mol Cell Biol; 2005 Dec; 25(23):10639-51. PubMed ID: 16287874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the dynamic nature of the interactions between nuclear proteins and histones upon DNA damage using an immobilized peptide chemical proteomics approach.
    Dirksen EH; Pinkse MW; Rijkers DT; Cloos J; Liskamp RM; Slijper M; Heck AJ
    J Proteome Res; 2006 Sep; 5(9):2380-8. PubMed ID: 16944950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenovirus protein V induces redistribution of nucleolin and B23 from nucleolus to cytoplasm.
    Matthews DA
    J Virol; 2001 Jan; 75(2):1031-8. PubMed ID: 11134316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin assembly: biochemical identities and genetic redundancy.
    Adams CR; Kamakaka RT
    Curr Opin Genet Dev; 1999 Apr; 9(2):185-90. PubMed ID: 10322140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of ATP-dependent chromatin assembly by ACF.
    Fyodorov DV; Kadonaga JT
    Nature; 2002 Aug; 418(6900):897-900. PubMed ID: 12192415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RCAF complex mediates chromatin assembly during DNA replication and repair.
    Tyler JK; Adams CR; Chen SR; Kobayashi R; Kamakaka RT; Kadonaga JT
    Nature; 1999 Dec; 402(6761):555-60. PubMed ID: 10591219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of DNA transcription by the replication factor from the adenovirus genome in a chromatin-like structure.
    Matsumoto K; Okuwaki M; Kawase H; Handa H; Hanaoka F; Nagata K
    J Biol Chem; 1995 Apr; 270(16):9645-50. PubMed ID: 7721897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae.
    Meijsing SH; Ehrenhofer-Murray AE
    Genes Dev; 2001 Dec; 15(23):3169-82. PubMed ID: 11731480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.