These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11470093)

  • 1. Evidence for membrane affinity of the C-terminal domain of bovine milk PP3 component.
    Campagna S; Cosette P; Molle G; Gaillard JL
    Biochim Biophys Acta; 2001 Aug; 1513(2):217-22. PubMed ID: 11470093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of the membrane-binding 38 C-terminal residues from bovine PP3 determined by liquid- and solid-state NMR spectroscopy.
    Bak M; Sorensen MD; Sorensen ES; Rasmussen LK; Sorensen OW; Petersen TE; Nielsen NC
    Eur J Biochem; 2000 Jan; 267(1):188-99. PubMed ID: 10601866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational studies of a synthetic peptide from the putative lipid-binding domain of bovine milk component PP3.
    Campagna S; Vitoux B; Humbert G; Girardet JM; Linden G; Haertle T; Gaillard JL
    J Dairy Sci; 1998 Dec; 81(12):3139-48. PubMed ID: 9891261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PP3 forms stable tetrameric structures through hydrophobic interactions via the C-terminal amphipathic helix and undergoes reversible thermal dissociation and denaturation.
    Pedersen LR; Nielsen SB; Hansted JG; Petersen TE; Otzen DE; Sørensen ES
    FEBS J; 2012 Jan; 279(2):336-47. PubMed ID: 22099394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolytic activation of proteose peptone component 3 by release of a C-terminal peptide with antibacterial properties.
    Pedersen LR; Hansted JG; Nielsen SB; Petersen TE; Sørensen US; Otzen D; Sørensen ES
    J Dairy Sci; 2012 Jun; 95(6):2819-29. PubMed ID: 22612919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The primary structure of caprine PP3: amino acid sequence, phosphorylation, and glycosylation of component PP3 from the proteose-peptone fraction of caprine milk.
    Lister IM; Rasmussen LK; Johnsen LB; Møller L; Petersen TE; Sørensen ES
    J Dairy Sci; 1998 Aug; 81(8):2111-5. PubMed ID: 9749374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Component PP3 from bovine milk is a substrate for transglutaminase. Sequence location of putative crosslinking sites.
    Sørensen ES; Rasmussen LK; Petersen TE
    J Dairy Res; 1999 Feb; 66(1):145-50. PubMed ID: 10191480
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure of glycopeptides isolated from bovine milk component PP3.
    Girardet JM; Coddeville B; Plancke Y; Strecker G; Campagna S; Spik G; Linden G
    Eur J Biochem; 1995 Dec; 234(3):939-46. PubMed ID: 8575455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The localization and multimeric nature of component PP3 in bovine milk: purification and characterization of PP3 from caprine and ovine milks.
    Sørensen ES; Rasmussen LK; Møller L; Petersen TE
    J Dairy Sci; 1997 Dec; 80(12):3176-81. PubMed ID: 9436096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation, glycosylation and amino acid sequence of component PP3 from the proteose peptone fraction of bovine milk.
    Sørensen ES; Petersen TE
    J Dairy Res; 1993 Nov; 60(4):535-42. PubMed ID: 8294608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Camel (camelus dromedarius) milk PP3: evidence for an insertion in the amino-terminal sequence of the camel milk whey protein.
    Girardet JM; Saulnier F; Gaillard JL; Ramet JP; Humbert G
    Biochem Cell Biol; 2000; 78(1):19-26. PubMed ID: 10735560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C-terminal half of the colicin A pore-forming domain is active in vivo and in vitro.
    Nardi A; Slatin SL; Baty D; Duché D
    J Mol Biol; 2001 Apr; 307(5):1293-303. PubMed ID: 11292342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of peptide fragments from a seven helix membrane receptor to lipid bilayers and to micelles.
    Pertinhez-Sini TA; Nakaie CR; Carvalho RS; Paiva AC; Tabak M; Toma F; Schreier S
    Braz J Med Biol Res; 1994 Feb; 27(2):535-40. PubMed ID: 8081278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation, pore-forming activity, and antigenicity of synthetic peptide analogues of a spiralin putative amphipathic alpha helix.
    Brenner C; Duclohier H; Krchnák V; Wróblewski H
    Biochim Biophys Acta; 1995 May; 1235(2):161-8. PubMed ID: 7538789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PP3 component of bovine milk: a phosphorylated whey glycoprotein.
    Girardet JM; Linden G
    J Dairy Res; 1996 May; 63(2):333-50. PubMed ID: 8861351
    [No Abstract]   [Full Text] [Related]  

  • 17. The alignment of a voltage-sensing peptide in dodecylphosphocholine micelles and in oriented lipid bilayers by nuclear magnetic resonance and molecular modeling.
    Mattila K; Kinder R; Bechinger B
    Biophys J; 1999 Oct; 77(4):2102-13. PubMed ID: 10512830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain.
    Ruan KH; Li D; Ji J; Lin YZ; Gao X
    Biochemistry; 1998 Jan; 37(3):822-30. PubMed ID: 9454571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of two overlapped synthetic peptides from GB virus C with charged mono and bilayers.
    Alay M; Haro I; Alsina MA; Girona V; Prat J; Busquets MA
    Colloids Surf B Biointerfaces; 2013 May; 105():7-13. PubMed ID: 23352943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental factors differently affect human and rat IAPP: conformational preferences and membrane interactions of IAPP17-29 peptide derivatives.
    Pappalardo G; Milardi D; Magrì A; Attanasio F; Impellizzeri G; La Rosa C; Grasso D; Rizzarelli E
    Chemistry; 2007; 13(36):10204-15. PubMed ID: 17902185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.