These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 11470113)

  • 1. Cortical bone tissue resists fatigue fracture by deceleration and arrest of microcrack growth.
    Akkus O; Rimnac CM
    J Biomech; 2001 Jun; 34(6):757-64. PubMed ID: 11470113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcrack growth parameters for compact bone deduced from stiffness variations.
    Taylor D
    J Biomech; 1998 Jul; 31(7):587-92. PubMed ID: 9796680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of a microcracking-based toughening mechanism for cortical bone.
    Vashishth D; Tanner KE; Bonfield W
    J Biomech; 2003 Jan; 36(1):121-4. PubMed ID: 12485646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important.
    Akkus O; Knott DF; Jepsen KJ; Davy DT; Rimnac CM
    J Biomed Mater Res A; 2003 Jun; 65(4):482-8. PubMed ID: 12761839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone.
    Demirtas A; Ural A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1415-1428. PubMed ID: 29808355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic short crack growth in cortical bone.
    Hazenberg JG; Taylor D; Lee TC
    Technol Health Care; 2006; 14(4-5):393-402. PubMed ID: 17065760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes.
    Zarrinkalam KH; Kuliwaba JS; Martin RB; Wallwork MA; Fazzalari NL
    Eur J Morphol; 2005; 42(1-2):81-90. PubMed ID: 16123027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading.
    Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P
    Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do microcracks decrease or increase fatigue resistance in cortical bone?
    Sobelman OS; Gibeling JC; Stover SM; Hazelwood SJ; Yeh OC; Shelton DR; Martin RB
    J Biomech; 2004 Sep; 37(9):1295-303. PubMed ID: 15275836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.
    Fletcher L; Codrington J; Parkinson I
    J Mater Sci Mater Med; 2014 Jul; 25(7):1661-70. PubMed ID: 24715332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone.
    Mitchell EJ; Stawarz AM; Kayacan R; Rimnac CM
    J Bone Joint Surg Am; 2004 Dec; 86(12):2648-57. PubMed ID: 15590849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fiber-ceramic matrix composite material model for osteonal cortical bone fracture micromechanics: solution of arbitrary microcracks interaction.
    Raeisi Najafi A; Arshi AR; Saffar KP; Eslami MR; Fariborz S; Moeinzadeh MH
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):217-23. PubMed ID: 19627826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdamage and mechanical behaviour: predicting failure and remodelling in compact bone.
    Taylor D; Lee TC
    J Anat; 2003 Aug; 203(2):203-11. PubMed ID: 12924820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of Microcracks and Tissue Compositional Heterogeneity in Determining Fracture Resistance of Human Cortical Bone.
    Demirtas A; Ural A
    J Biomech Eng; 2018 Sep; 140(9):. PubMed ID: 29801171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcrack frequency and bone remodeling in postmenopausal osteoporotic women on long-term bisphosphonates: a bone biopsy study.
    Chapurlat RD; Arlot M; Burt-Pichat B; Chavassieux P; Roux JP; Portero-Muzy N; Delmas PD
    J Bone Miner Res; 2007 Oct; 22(10):1502-9. PubMed ID: 17824840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization.
    Turnbull TL; Baumann AP; Roeder RK
    J Biomech; 2014 Sep; 47(12):3135-42. PubMed ID: 25065731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromechanics of osteonal cortical bone fracture.
    Guo XE; Liang LC; Goldstein SA
    J Biomech Eng; 1998 Feb; 120(1):112-7. PubMed ID: 9675689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crack growth resistance in cortical bone: concept of microcrack toughening.
    Vashishth D; Behiri JC; Bonfield W
    J Biomech; 1997 Aug; 30(8):763-9. PubMed ID: 9239560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone.
    Galley SA; Michalek DJ; Donahue SW
    J Biomech; 2006; 39(11):2026-33. PubMed ID: 16115637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.