These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1147017)

  • 1. Influence of crossbridge compliance on the force-velocity relation of muscle.
    Grood ES; Mates RE
    Am J Physiol; 1975 Jan; 228(1):244-9. PubMed ID: 1147017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of force production that explains the lag between crossbridge attachment and force after electrical stimulation of striated muscle fibers.
    Bagni MA; Cecchi G; Schoenberg M
    Biophys J; 1988 Dec; 54(6):1105-14. PubMed ID: 3233267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the mechanical behavior of the cat soleus muscle with a distribution-moment model.
    Zahalak GI
    J Biomech Eng; 1986 May; 108(2):131-40. PubMed ID: 3724100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A program for developing a comprehensive mathematical description of the crossbridge cycle of muscle.
    Slawnych MP; Seow CY; Huxley AF; Ford LE
    Biophys J; 1994 Oct; 67(4):1669-77. PubMed ID: 7819498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimate of rate constants of muscle crossbridge turnover based on dynamic mechanical measurements.
    Barden JA
    Physiol Chem Phys; 1981; 13(3):211-9. PubMed ID: 7301942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of amrinone on the contractile behaviour of frog striated muscle fibres.
    MÃ¥nsson A; Edman KA
    Acta Physiol Scand; 1985 Nov; 125(3):481-93. PubMed ID: 3878658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Events of the Crossbridge Cycle Reflected in the Force-Velocity Relationship of Activated Muscle.
    Seow KN; Seow CY
    Front Physiol; 2022; 13():846284. PubMed ID: 35360243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of doubly attached crossbridges on the mechanical behavior of skeletal muscle fibers under equilibrium conditions.
    Tozeren A
    Biophys J; 1987 Nov; 52(5):901-6. PubMed ID: 3427193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remarks on muscle contraction mechanism II. Isometric tension transient and isotonic velocity transient.
    Mitsui T; Takai N; Ohshima H
    Int J Mol Sci; 2011; 12(3):1697-726. PubMed ID: 21673917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the theory of muscle contraction: filament extensibility and the development of isometric force and stiffness.
    Mijailovich SM; Fredberg JJ; Butler JP
    Biophys J; 1996 Sep; 71(3):1475-84. PubMed ID: 8874021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Requirements of a Mathematical Model of Muscle Contraction.
    Palladino JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6956-6959. PubMed ID: 31947439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The stiffness under isotonic releases during a twitch of a frog muscle fibre.
    Haugen P
    Adv Exp Med Biol; 1988; 226():461-71. PubMed ID: 3261490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the solutions of Huxley-type models in cardiac muscle fiber contractions.
    Taylor TW; Goto Y; Suga H
    J Theor Biol; 1993 Dec; 165(3):409-16. PubMed ID: 8114504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable crossbridge cycling-ATP coupling accounts for cardiac mechanoenergetics.
    Taylor TW; Suga H
    Adv Exp Med Biol; 1993; 332():775-82; discussion 782-3. PubMed ID: 8109387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas.
    Caremani M; Dantzig J; Goldman YE; Lombardi V; Linari M
    Biophys J; 2008 Dec; 95(12):5798-808. PubMed ID: 18835889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanisms of force enhancement during constant velocity lengthening in tetanized single fibres of frog muscle.
    Colomo F; Lombardi V; Piazzesi G
    Adv Exp Med Biol; 1988; 226():489-502. PubMed ID: 3261491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrical factors influencing muscle force development. I. The effect of filament spacing upon axial forces.
    Schoenberg M
    Biophys J; 1980 Apr; 30(1):51-67. PubMed ID: 6894872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thick filament movement and isometric tension in activated skeletal muscle.
    Horowits R; Podolsky RJ
    Biophys J; 1988 Jul; 54(1):165-71. PubMed ID: 3416026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.