BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 11470236)

  • 21. Lipid Regulation of Sodium Channels.
    D'Avanzo N
    Curr Top Membr; 2016; 78():353-407. PubMed ID: 27586290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sphingolipid symmetry governs membrane lipid raft structure.
    Quinn PJ
    Biochim Biophys Acta; 2014 Jul; 1838(7):1922-30. PubMed ID: 24613791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids.
    Kolter T; Sandhoff K
    Annu Rev Cell Dev Biol; 2005; 21():81-103. PubMed ID: 16212488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sphingolipids in the function of G protein-coupled receptors.
    Jafurulla M; Chattopadhyay A
    Eur J Pharmacol; 2015 Sep; 763(Pt B):241-6. PubMed ID: 26164794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sphingolipid topology and the dynamic organization and function of membrane proteins.
    van Meer G; Hoetzl S
    FEBS Lett; 2010 May; 584(9):1800-5. PubMed ID: 19837070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sphingolipid hydroxylation in mammals, yeast and plants - An integrated view.
    Marquês JT; Marinho HS; de Almeida RFM
    Prog Lipid Res; 2018 Jul; 71():18-42. PubMed ID: 29746894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Sphingolipid-binding Motif in G Protein-coupled Receptors.
    Shrivastava S; Jafurulla M; Tiwari S; Chattopadhyay A
    Adv Exp Med Biol; 2018; 1112():141-149. PubMed ID: 30637695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts.
    Frisz JF; Lou K; Klitzing HA; Hanafin WP; Lizunov V; Wilson RL; Carpenter KJ; Kim R; Hutcheon ID; Zimmerberg J; Weber PK; Kraft ML
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):E613-22. PubMed ID: 23359681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sphingolipids as modulators of membrane proteins.
    Ernst AM; Brügger B
    Biochim Biophys Acta; 2014 May; 1841(5):665-70. PubMed ID: 24201378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane nanodomains: contribution of curvature and interaction with proteins and cytoskeleton.
    Arumugam S; Bassereau P
    Essays Biochem; 2015; 57():109-19. PubMed ID: 25658348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sphingolipids and the formation of sterol-enriched ordered membrane domains.
    Ramstedt B; Slotte JP
    Biochim Biophys Acta; 2006 Dec; 1758(12):1945-56. PubMed ID: 16901461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid landscapes and pipelines in membrane homeostasis.
    Holthuis JC; Menon AK
    Nature; 2014 Jun; 510(7503):48-57. PubMed ID: 24899304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The 'double lives' of membrane lipids. Workshop: Anno 2000. A lipid milestone.
    Killian JA; van Meer G
    EMBO Rep; 2001 Feb; 2(2):91-5. PubMed ID: 11258718
    [No Abstract]   [Full Text] [Related]  

  • 35. Functional activity of photoreceptor cyclic nucleotide-gated channels is dependent on the integrity of cholesterol- and sphingolipid-enriched membrane domains.
    Ding XQ; Fitzgerald JB; Matveev AV; McClellan ME; Elliott MH
    Biochemistry; 2008 Mar; 47(12):3677-87. PubMed ID: 18303857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CHO/LY-B cell growth under limiting sphingolipid supply: Correlation between lipid composition and biophysical properties of sphingolipid-restricted cell membranes.
    Monasterio BG; Jiménez-Rojo N; García-Arribas AB; Riezman H; Goñi FM; Alonso A
    FASEB J; 2021 Jun; 35(6):e21657. PubMed ID: 34010474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different sphingolipids show differential partitioning into sphingolipid/cholesterol-rich domains in lipid bilayers.
    Wang TY; Silvius JR
    Biophys J; 2000 Sep; 79(3):1478-89. PubMed ID: 10969009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quercetin dual interaction at the membrane level.
    de Granada-Flor A; Sousa C; Filipe HAL; Santos MSCS; de Almeida RFM
    Chem Commun (Camb); 2019 Feb; 55(12):1750-1753. PubMed ID: 30664132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers.
    Wang TY; Silvius JR
    Biophys J; 2003 Jan; 84(1):367-78. PubMed ID: 12524290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts).
    London E; Brown DA
    Biochim Biophys Acta; 2000 Nov; 1508(1-2):182-95. PubMed ID: 11090825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.