These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11470264)

  • 1. Isotope effects in the study of enzymatic phosphoryl transfer reactions.
    Hengge AC
    FEBS Lett; 2001 Jul; 501(2-3):99-102. PubMed ID: 11470264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotope effects in the study of phosphoryl and sulfuryl transfer reactions.
    Hengge AC
    Acc Chem Res; 2002 Feb; 35(2):105-12. PubMed ID: 11851388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate.
    McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY
    Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis.
    Admiraal SJ; Herschlag D
    Chem Biol; 1995 Nov; 2(11):729-39. PubMed ID: 9383480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic isotope effects in the characterization of catalysis by protein tyrosine phosphatases.
    Hengge AC
    Biochim Biophys Acta; 2015 Nov; 1854(11):1768-75. PubMed ID: 25840000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the transition-state structure of dual-specificity protein phosphatases using a physiological substrate mimic.
    Grzyska PK; Kim Y; Jackson MD; Hengge AC; Denu JM
    Biochemistry; 2004 Jul; 43(27):8807-14. PubMed ID: 15236589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis.
    Hengge AC; Denu JM; Dixon JE
    Biochemistry; 1996 Jun; 35(22):7084-92. PubMed ID: 8679534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaving group dependence and proton inventory studies of the phosphorylation of a cytoplasmic phosphotyrosyl protein phosphatase from bovine heart.
    Zhang ZY; Van Etten RL
    Biochemistry; 1991 Sep; 30(37):8954-9. PubMed ID: 1654080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing Mechanistic Similarities between Response Regulator Signaling Proteins and Haloacid Dehalogenase Phosphatases.
    Immormino RM; Starbird CA; Silversmith RE; Bourret RB
    Biochemistry; 2015 Jun; 54(22):3514-27. PubMed ID: 25928369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition between superoxide and hydrogen peroxide signaling in heterolytic enzymatic processes.
    Afanas'ev IB
    Med Hypotheses; 2006; 66(6):1125-8. PubMed ID: 16500034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of protein phosphatases in plants and animals.
    Moorhead GB; De Wever V; Templeton G; Kerk D
    Biochem J; 2009 Jan; 417(2):401-9. PubMed ID: 19099538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of the phosphoryl transfer catalyzed by Yersinia protein-tyrosine phosphatase: a computational and isotope effect study.
    Czyryca PG; Hengge AC
    Biochim Biophys Acta; 2001 Jun; 1547(2):245-53. PubMed ID: 11410280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of phosphoryl and acyl transfer.
    Cleland WW; Hengge AC
    FASEB J; 1995 Dec; 9(15):1585-94. PubMed ID: 8529838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional analysis of the phosphoryl transfer reaction mediated by the human small C-terminal domain phosphatase, Scp1.
    Zhang M; Liu J; Kim Y; Dixon JE; Pfaff SL; Gill GN; Noel JP; Zhang Y
    Protein Sci; 2010 May; 19(5):974-86. PubMed ID: 20222012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein phosphatases: structures and implications.
    Jia Z
    Biochem Cell Biol; 1997; 75(1):17-26. PubMed ID: 9192069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into tyrosine phosphorylation in v-Fps using proton inventory techniques.
    Adams JA
    Biochemistry; 1996 Aug; 35(33):10949-56. PubMed ID: 8718888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotope effects on the mechanism of calcineurin catalysis: kinetic solvent isotope and isotope exchange studies.
    Martin BL; Graves DJ
    Biochim Biophys Acta; 1994 May; 1206(1):136-42. PubMed ID: 8186243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure and mechanism of protein phosphatases: insights into catalysis and regulation.
    Barford D; Das AK; Egloff MP
    Annu Rev Biophys Biomol Struct; 1998; 27():133-64. PubMed ID: 9646865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical comparison of p-nitrophenyl phosphate and sulfate hydrolysis in aqueous solution: implications for enzyme-catalyzed sulfuryl transfer.
    Kamerlin SC
    J Org Chem; 2011 Nov; 76(22):9228-38. PubMed ID: 21981415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase.
    Adediran SA; Pratt RF
    Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.