These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 11470533)
1. In vitro selection of enzymatically active lipase variants from phage libraries using a mechanism-based inhibitor. Danielsen S; Eklund M; Deussen HJ; Gräslund T; Nygren PA; Borchert TV Gene; 2001 Jul; 272(1-2):267-74. PubMed ID: 11470533 [TBL] [Abstract][Full Text] [Related]
2. Binding of phage displayed Bacillus subtilis lipase A to a phosphonate suicide inhibitor. Dröge MJ; Rüggeberg CJ; van der Sloot AM; Schimmel J; Dijkstra DS; Verhaert RM; Reetz MT; Quax WJ J Biotechnol; 2003 Feb; 101(1):19-28. PubMed ID: 12523966 [TBL] [Abstract][Full Text] [Related]
3. A phagemid vector using the E. coli phage shock promoter facilitates phage display of toxic proteins. Beekwilder J; Rakonjac J; Jongsma M; Bosch D Gene; 1999 Mar; 228(1-2):23-31. PubMed ID: 10072755 [TBL] [Abstract][Full Text] [Related]
4. Trp89 in the lid of Humicola lanuginosa lipase is important for efficient hydrolysis of tributyrin. Holmquist M; Martinelle M; Clausen IG; Patkar S; Svendsen A; Hult K Lipids; 1994 Sep; 29(9):599-603. PubMed ID: 7815893 [TBL] [Abstract][Full Text] [Related]
5. Selection of full-length IgGs by tandem display on filamentous phage particles and Escherichia coli fluorescence-activated cell sorting screening. Mazor Y; Van Blarcom T; Carroll S; Georgiou G FEBS J; 2010 May; 277(10):2291-303. PubMed ID: 20423457 [TBL] [Abstract][Full Text] [Related]
6. Active serine involved in the stabilization of the active site loop in the Humicola lanuginosa lipase. Peters GH; Svendsen A; Langberg H; Vind J; Patkar SA; Toxvaerd S; Kinnunen PK Biochemistry; 1998 Sep; 37(36):12375-83. PubMed ID: 9730809 [TBL] [Abstract][Full Text] [Related]
7. Display of active subtilisin 309 on phage: analysis of parameters influencing the selection of subtilisin variants with changed substrate specificity from libraries using phosphonylating inhibitors. Legendre D; Laraki N; Gräslund T; Bjørnvad ME; Bouchet M; Nygren PA; Borchert TV; Fastrez J J Mol Biol; 2000 Feb; 296(1):87-102. PubMed ID: 10656819 [TBL] [Abstract][Full Text] [Related]
8. Interfacial control of lid opening in Thermomyces lanuginosa lipase. Cajal Y; Svendsen A; Girona V; Patkar SA; Alsina MA Biochemistry; 2000 Jan; 39(2):413-23. PubMed ID: 10631003 [TBL] [Abstract][Full Text] [Related]
9. Inverting enantioselectivity of Burkholderia cepacia KWI-56 lipase by combinatorial mutation and high-throughput screening using single-molecule PCR and in vitro expression. Koga Y; Kato K; Nakano H; Yamane T J Mol Biol; 2003 Aug; 331(3):585-92. PubMed ID: 12899830 [TBL] [Abstract][Full Text] [Related]
10. Rational evolution of the unusual Y-type oxyanion hole of Rhodococcus sp. CR53 lipase LipR. Infanzón B; Sotelo PH; Martínez J; Diaz P Enzyme Microb Technol; 2018 Jan; 108():26-33. PubMed ID: 29108624 [TBL] [Abstract][Full Text] [Related]
11. Generation and analysis of the improved human HAL9/10 antibody phage display libraries. Kügler J; Wilke S; Meier D; Tomszak F; Frenzel A; Schirrmann T; Dübel S; Garritsen H; Hock B; Toleikis L; Schütte M; Hust M BMC Biotechnol; 2015 Feb; 15():10. PubMed ID: 25888378 [TBL] [Abstract][Full Text] [Related]
12. Stabilizing the subtilisin BPN' pro-domain by phage display selection: how restrictive is the amino acid code for maximum protein stability? Ruan B; Hoskins J; Wang L; Bryan PN Protein Sci; 1998 Nov; 7(11):2345-53. PubMed ID: 9828000 [TBL] [Abstract][Full Text] [Related]
13. Exploring the protein stability landscape: Bacillus subtilis lipase A as a model for detergent tolerance. Fulton A; Frauenkron-Machedjou VJ; Skoczinski P; Wilhelm S; Zhu L; Schwaneberg U; Jaeger KE Chembiochem; 2015 Apr; 16(6):930-6. PubMed ID: 25773356 [TBL] [Abstract][Full Text] [Related]
14. The basic structure of filamentous phage and its use in the display of combinatorial peptide libraries. Cabilly S Mol Biotechnol; 1999 Sep; 12(2):143-8. PubMed ID: 10596371 [TBL] [Abstract][Full Text] [Related]
15. A novel helper phage that improves phage display selection efficiency by preventing the amplification of phages without recombinant protein. Kramer RA; Cox F; van der Horst M; van der Oudenrijn S; Res PC; Bia J; Logtenberg T; de Kruif J Nucleic Acids Res; 2003 Jun; 31(11):e59. PubMed ID: 12771223 [TBL] [Abstract][Full Text] [Related]
16. Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling. Suen WC; Zhang N; Xiao L; Madison V; Zaks A Protein Eng Des Sel; 2004 Feb; 17(2):133-40. PubMed ID: 15047909 [TBL] [Abstract][Full Text] [Related]
17. Development of a Substrate Identification Method for Human Scp1 Phosphatase Using Phosphorylation Mimic Phage Display. Otsubo K; Yoneda T; Kaneko A; Yagi S; Furukawa K; Chuman Y Protein Pept Lett; 2018; 25(1):76-83. PubMed ID: 29210629 [TBL] [Abstract][Full Text] [Related]
18. [Preparation of human phage antibodies specific for SSA/Ro antigen and its sequence analysis]. Li YJ; Peng JM; Zhang FC Zhonghua Yi Xue Za Zhi; 2004 Nov; 84(22):1904-8. PubMed ID: 15631804 [TBL] [Abstract][Full Text] [Related]
19. Dual display: phage selection driven by co-engagement of two targets by two different antibody fragments. Fagète S; Botas-Perez L; Rossito-Borlat I; Adea K; Gueneau F; Ravn U; Rousseau F; Kosco-Vilbois M; Fischer N; Hartley O Protein Eng Des Sel; 2017 Sep; 30(9):575-582. PubMed ID: 28444391 [TBL] [Abstract][Full Text] [Related]
20. Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increased activity. van der Veen BA; Potocki-Véronèse G; Albenne C; Joucla G; Monsan P; Remaud-Simeon M FEBS Lett; 2004 Feb; 560(1-3):91-7. PubMed ID: 14988004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]