BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

760 related articles for article (PubMed ID: 11470906)

  • 21. Modifications of the ethanolamine head in N-palmitoylethanolamine: synthesis and evaluation of new agents interfering with the metabolism of anandamide.
    Vandevoorde S; Jonsson KO; Fowler CJ; Lambert DM
    J Med Chem; 2003 Apr; 46(8):1440-8. PubMed ID: 12672243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Loss of cannabinoid-stimulated guanosine 5'-O-(3-[(35)S]Thiotriphosphate) binding without receptor down-regulation in brain regions of anandamide-tolerant rats.
    Rubino T; Viganò D; Costa B; Colleoni M; Parolaro D
    J Neurochem; 2000 Dec; 75(6):2478-84. PubMed ID: 11080200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task.
    Varvel SA; Wise LE; Niyuhire F; Cravatt BF; Lichtman AH
    Neuropsychopharmacology; 2007 May; 32(5):1032-41. PubMed ID: 17047668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemodynamic profile, responsiveness to anandamide, and baroreflex sensitivity of mice lacking fatty acid amide hydrolase.
    Pacher P; Bátkai S; Osei-Hyiaman D; Offertáler L; Liu J; Harvey-White J; Brassai A; Járai Z; Cravatt BF; Kunos G
    Am J Physiol Heart Circ Physiol; 2005 Aug; 289(2):H533-41. PubMed ID: 15821037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of anxiety through blockade of anandamide hydrolysis.
    Kathuria S; Gaetani S; Fegley D; Valiño F; Duranti A; Tontini A; Mor M; Tarzia G; La Rana G; Calignano A; Giustino A; Tattoli M; Palmery M; Cuomo V; Piomelli D
    Nat Med; 2003 Jan; 9(1):76-81. PubMed ID: 12461523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172.
    Fegley D; Kathuria S; Mercier R; Li C; Goutopoulos A; Makriyannis A; Piomelli D
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8756-61. PubMed ID: 15138300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB₁ and CB₂ receptors.
    Desroches J; Charron S; Bouchard JF; Beaulieu P
    Neuropharmacology; 2014 Feb; 77():441-52. PubMed ID: 24148808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cannabinoid pharmacology: implications for additional cannabinoid receptor subtypes.
    Wiley JL; Martin BR
    Chem Phys Lipids; 2002 Dec; 121(1-2):57-63. PubMed ID: 12505690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system.
    Cravatt BF; Lichtman AH
    Curr Opin Chem Biol; 2003 Aug; 7(4):469-75. PubMed ID: 12941421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anandamide degradation and N-acylethanolamines level in wild-type and CB1 cannabinoid receptor knockout mice of different ages.
    Maccarrone M; Attinà M; Bari M; Cartoni A; Ledent C; Finazzi-Agrò A
    J Neurochem; 2001 Jul; 78(2):339-48. PubMed ID: 11461969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatty acid amide hydrolase inhibition enhances the anti-allodynic actions of endocannabinoids in a model of acute pain adapted for the mouse.
    Palmer JA; Higuera ES; Chang L; Chaplan SR
    Neuroscience; 2008 Jul; 154(4):1554-61. PubMed ID: 18541380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of fatty acid amides in the carrageenan-induced paw edema model.
    Wise LE; Cannavacciulo R; Cravatt BF; Martin BF; Lichtman AH
    Neuropharmacology; 2008 Jan; 54(1):181-8. PubMed ID: 17675189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of anandamide interaction with the cannabinoid brain receptor: SR 141716A antagonism studies in mice and autoradiographic analysis of receptor binding in rat brain.
    Adams IB; Compton DR; Martin BR
    J Pharmacol Exp Ther; 1998 Mar; 284(3):1209-17. PubMed ID: 9495885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of the endocannabinoid system by organophosphorus nerve agents.
    Nomura DK; Blankman JL; Simon GM; Fujioka K; Issa RS; Ward AM; Cravatt BF; Casida JE
    Nat Chem Biol; 2008 Jun; 4(6):373-8. PubMed ID: 18438404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A hydrolase enzyme inactivating endogenous ligands for cannabinoid receptors.
    Ueda N; Goparaju SK; Katayama K; Kurahashi Y; Suzuki H; Yamamoto S
    J Med Invest; 1998 Aug; 45(1-4):27-36. PubMed ID: 9864962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finding of the endocannabinoid signalling system in Hydra, a very primitive organism: possible role in the feeding response.
    De Petrocellis L; Melck D; Bisogno T; Milone A; Di Marzo V
    Neuroscience; 1999; 92(1):377-87. PubMed ID: 10392859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the sleep-wake patterns in mice lacking fatty acid amide hydrolase.
    Huitron-Resendiz S; Sanchez-Alavez M; Wills DN; Cravatt BF; Henriksen SJ
    Sleep; 2004 Aug; 27(5):857-65. PubMed ID: 15453543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pro-nociceptive phenotype unmasked in mice lacking fatty-acid amide hydrolase.
    Carey LM; Slivicki RA; Leishman E; Cornett B; Mackie K; Bradshaw H; Hohmann AG
    Mol Pain; 2016; 12():. PubMed ID: 27178246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ex vivo imaging of fatty acid amide hydrolase activity and its inhibition in the mouse brain.
    Glaser ST; Gatley SJ; Gifford AN
    J Pharmacol Exp Ther; 2006 Mar; 316(3):1088-97. PubMed ID: 16278311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progesterone up-regulates anandamide hydrolase in human lymphocytes: role of cytokines and implications for fertility.
    Maccarrone M; Valensise H; Bari M; Lazzarin N; Romanini C; Finazzi-Agrò A
    J Immunol; 2001 Jun; 166(12):7183-9. PubMed ID: 11390466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.