BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 11471246)

  • 21. Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain.
    Aravind L; Koonin EV
    J Mol Biol; 1999 Jan; 285(4):1353-61. PubMed ID: 9917379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II.
    Vogel A; Schilling O; Meyer-Klaucke W
    Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping the distribution of conformational information throughout a protein sequence.
    Gebhard LG; Risso VA; Santos J; Ferreyra RG; Noguera ME; Ermácora MR
    J Mol Biol; 2006 Apr; 358(1):280-8. PubMed ID: 16510154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional control of the binuclear metal site in the metallo-beta-lactamase-like fold by subtle amino acid replacements.
    Gomes CM; Frazão C; Xavier AV; Legall J; Teixeira M
    Protein Sci; 2002 Mar; 11(3):707-12. PubMed ID: 11847294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bulgecin A: a novel inhibitor of binuclear metallo-beta-lactamases.
    Simm AM; Loveridge EJ; Crosby J; Avison MB; Walsh TR; Bennett PM
    Biochem J; 2005 May; 387(Pt 3):585-90. PubMed ID: 15569001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer.
    Iyer LM; Koonin EV; Aravind L
    Gene; 2004 Jun; 335():73-88. PubMed ID: 15194191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural classification of thioredoxin-like fold proteins.
    Qi Y; Grishin NV
    Proteins; 2005 Feb; 58(2):376-88. PubMed ID: 15558583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of a common beta-propeller catalytic domain for fructosyltransferases of different origin and substrate specificity.
    Pons T; Hernández L; Batista FR; Chinea G
    Protein Sci; 2000 Nov; 9(11):2285-91. PubMed ID: 11305239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nickel trafficking: insights into the fold and function of UreE, a urease metallochaperone.
    Musiani F; Zambelli B; Stola M; Ciurli S
    J Inorg Biochem; 2004 May; 98(5):803-13. PubMed ID: 15134926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold.
    González JM; Medrano Martín FJ; Costello AL; Tierney DL; Vila AJ
    J Mol Biol; 2007 Nov; 373(5):1141-56. PubMed ID: 17915249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural aspects for evolution of beta-lactamases from penicillin-binding proteins.
    Meroueh SO; Minasov G; Lee W; Shoichet BK; Mobashery S
    J Am Chem Soc; 2003 Aug; 125(32):9612-8. PubMed ID: 12904027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell surface proteins in archaeal and bacterial genomes comprising "LVIVD", "RIVW" and "LGxL" tandem sequence repeats are predicted to fold as beta-propeller.
    Adindla S; Inampudi KK; Guruprasad L
    Int J Biol Macromol; 2007 Oct; 41(4):454-68. PubMed ID: 17681373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the interactions between beta-lactams and a metallo-beta-lactamase from bacillus cereus using a monoclonal antibody.
    Chambers SJ; Wyatt GM; Morgan MR
    Anal Biochem; 2001 Jan; 288(2):149-55. PubMed ID: 11152585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily.
    Baier F; Tokuriki N
    J Mol Biol; 2014 Jun; 426(13):2442-56. PubMed ID: 24769192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular architecture of the Mn2+-dependent lactonase UlaG reveals an RNase-like metallo-beta-lactamase fold and a novel quaternary structure.
    Garces F; Fernández FJ; Montellà C; Penya-Soler E; Prohens R; Aguilar J; Baldomà L; Coll M; Badia J; Vega MC
    J Mol Biol; 2010 May; 398(5):715-29. PubMed ID: 20359483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-based phylogeny of the metallo-beta-lactamases.
    Garau G; Di Guilmi AM; Hall BG
    Antimicrob Agents Chemother; 2005 Jul; 49(7):2778-84. PubMed ID: 15980349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequence and hydropathy profile analysis of two classes of secondary transporters.
    Lolkema JS; Slotboom DJ
    Mol Membr Biol; 2005; 22(3):177-89. PubMed ID: 16096261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of coenzyme specificity in dehydrogenases/reductases. A hidden Markov model-based method and its application on complete genomes.
    Kallberg Y; Persson B
    FEBS J; 2006 Mar; 273(6):1177-84. PubMed ID: 16519683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Positively cooperative binding of zinc ions to Bacillus cereus 569/H/9 beta-lactamase II suggests that the binuclear enzyme is the only relevant form for catalysis.
    Jacquin O; Balbeur D; Damblon C; Marchot P; De Pauw E; Roberts GC; Frère JM; Matagne A
    J Mol Biol; 2009 Oct; 392(5):1278-91. PubMed ID: 19665032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-beta-lactamase superfamily.
    Ishikawa H; Nakagawa N; Kuramitsu S; Masui R
    J Biochem; 2006 Oct; 140(4):535-42. PubMed ID: 16945939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.