These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 11471685)
21. Taking advantage of aerated-anoxic operation in a full-scale University of Cape Town process. Park HD; Whang LM; Reusser SR; Noguera DR Water Environ Res; 2006 Jun; 78(6):637-42. PubMed ID: 16894988 [TBL] [Abstract][Full Text] [Related]
22. Biological phosphorus and nitrogen removal with biological aerated filter using denitrifying phosphorus accumulating organism. Lee J; Kim J; Lee C; Yun Z; Choi E Water Sci Technol; 2005; 52(10-11):569-78. PubMed ID: 16459835 [TBL] [Abstract][Full Text] [Related]
23. Simultaneous carbon and nitrogen removal from anaerobic effluent of the cassava ethanol industry. Yin Z; Xie L; Zhou Q; Bi X J Biosci Bioeng; 2018 Mar; 125(3):346-352. PubMed ID: 29107629 [TBL] [Abstract][Full Text] [Related]
24. Using sludge fermentation liquid to improve wastewater short-cut nitrification-denitrification and denitrifying phosphorus removal via nitrite. Ji Z; Chen Y Environ Sci Technol; 2010 Dec; 44(23):8957-63. PubMed ID: 21053972 [TBL] [Abstract][Full Text] [Related]
25. Design and performance of BNR activated sludge systems with flat sheet membranes for solid-liquid separation. du Toit GJ; Ramphao MC; Parco V; Wentzel MC; Ekama GA Water Sci Technol; 2007; 56(6):105-13. PubMed ID: 17898449 [TBL] [Abstract][Full Text] [Related]
26. Impact of membrane solid-liquid separation on design of biological nutrient removal activated sludge systems. Ramphao M; Wentzel MC; Merritt R; Ekama GA; Young T; Buckley CA Biotechnol Bioeng; 2005 Mar; 89(6):630-46. PubMed ID: 15696540 [TBL] [Abstract][Full Text] [Related]
27. [Effect of SRT on denitrifying phosphorus removal in A/A/O process]. Xu WF; Chen YG; Zhang F; Gu GW Huan Jing Ke Xue; 2007 Aug; 28(8):1693-6. PubMed ID: 17926395 [TBL] [Abstract][Full Text] [Related]
28. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater. Merzouki M; Bernet N; Delgenès JP; Benlemlih M Bioresour Technol; 2005 Aug; 96(12):1317-22. PubMed ID: 15792577 [TBL] [Abstract][Full Text] [Related]
29. Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process. Wang Y; Peng Y; Stephenson T Bioresour Technol; 2009 Jul; 100(14):3506-12. PubMed ID: 19324544 [TBL] [Abstract][Full Text] [Related]
30. Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system. Wang Y; Zheng SJ; Pei LY; Ke L; Peng DC; Xia SQ Environ Technol; 2014; 35(21-24):2734-42. PubMed ID: 25176308 [TBL] [Abstract][Full Text] [Related]
31. Nutrient removal from wastewaters using high performance materials. Mackinnon ID; Barr K; Miller E; Hunter S; Pinel T Water Sci Technol; 2003; 47(11):101-7. PubMed ID: 12906277 [TBL] [Abstract][Full Text] [Related]
32. Characteristics and fate of organic nitrogen in municipal biological nutrient removal wastewater treatment plants. Czerwionka K; Makinia J; Pagilla KR; Stensel HD Water Res; 2012 May; 46(7):2057-66. PubMed ID: 22336627 [TBL] [Abstract][Full Text] [Related]
33. Development of an innovative vertical submerged membrane bioreactor (VSMBR) for simultaneous removal of organic matter and nutrients. Chae SR; Kang ST; Watanabe Y; Shin HS Water Res; 2006 Jun; 40(11):2161-7. PubMed ID: 16720035 [TBL] [Abstract][Full Text] [Related]
34. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation. Ramphao MC; Wentzel MC; Ekama GA; Alexander WV Water Sci Technol; 2006; 53(12):295-303. PubMed ID: 16889266 [TBL] [Abstract][Full Text] [Related]
35. Nitrification and denitrifying phosphorus removal in an upright continuous flow reactor. Reza M; Alvarez Cuenca M Water Sci Technol; 2016; 73(9):2093-100. PubMed ID: 27148710 [TBL] [Abstract][Full Text] [Related]
36. Enhanced nutrient removal in three types of step feeding process from municipal wastewater. Peng Y; Ge S Bioresour Technol; 2011 Jun; 102(11):6405-13. PubMed ID: 21474307 [TBL] [Abstract][Full Text] [Related]
37. New anaerobic process of nitrogen removal. Kalyuzhnyi S; Gladchenko M; Mulder A; Versprille B Water Sci Technol; 2006; 54(8):163-70. PubMed ID: 17163025 [TBL] [Abstract][Full Text] [Related]
38. Modeling and performance improvement of an anaerobic-anoxic/nitrifying-induced crystallization process via the multi-objective optimization method. Dai H; Chen W; Peng L; Wang X; Lu X Environ Sci Pollut Res Int; 2019 Feb; 26(5):5083-5093. PubMed ID: 30607850 [TBL] [Abstract][Full Text] [Related]
39. The ScanDeNi process could turn an existing under-performing activated sludge plant into an asset. Rosén S; Huijbregsen C Water Sci Technol; 2003; 47(11):31-6. PubMed ID: 12906268 [TBL] [Abstract][Full Text] [Related]
40. Simultaneous in-situ sludge reduction and nutrient removal in an A(2)MO-M system: Performances, mechanisms, and modeling with an extended ASM2d model. Yang S; Guo W; Chen Y; Peng S; Du J; Zheng H; Feng X; Ren N Water Res; 2016 Jan; 88():524-537. PubMed ID: 26524657 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]