These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11471700)

  • 21. Identifying different types of bulking in an activated sludge system through quantitative image analysis.
    Mesquita DP; Amaral AL; Ferreira EC
    Chemosphere; 2011 Oct; 85(4):643-52. PubMed ID: 21840038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bulking sludge in biological nutrient removal systems.
    Martins AM; Heijnen JJ; van Loosdrecht MC
    Biotechnol Bioeng; 2004 Apr; 86(2):125-35. PubMed ID: 15052632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A test for predicting propensity of activated sludge to acute filamentous bulking.
    Séka MA; Cabooter S; Verstraete W
    Water Environ Res; 2001; 73(2):237-42. PubMed ID: 11563384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of Microthrix parvicella and sludge bulking by ozone in a full-scale WWTP.
    Levén L; Wijnbladh E; Tuvesson M; Kragelund C; Hallin S
    Water Sci Technol; 2016; 73(4):866-72. PubMed ID: 26901730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship between flocculation of activated sludge and composition of extracellular polymeric substances.
    Wilén BM; Jin B; Lant P
    Water Sci Technol; 2003; 47(12):95-103. PubMed ID: 12926675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of chlorination bulking control on water quality and phosphate release/uptake in an anaerobic-oxic activated sludge system.
    Chang WC; Jou SJ; Chien CC; He JA
    Water Sci Technol; 2004; 50(8):177-83. PubMed ID: 15566201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring activated sludge settling properties using image analysis.
    Jenné R; Banadda EN; Smets IY; Van Impe JF
    Water Sci Technol; 2004; 50(7):281-5. PubMed ID: 15553487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Realization of short cut nitrification under the limited filamentous sludge bulking condition].
    Peng ZX; Peng YZ; Zuo JL; Gui LJ; Wang SY; Liu Y; Yu X
    Huan Jing Ke Xue; 2009 Aug; 30(8):2309-14. PubMed ID: 19799293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen.
    Guo JH; Peng YZ; Peng CY; Wang SY; Chen Y; Huang HJ; Sun ZR
    Bioresour Technol; 2010 Feb; 101(4):1120-6. PubMed ID: 19837583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control strategy for filamentous sludge bulking: Bench-scale test and full-scale application.
    Fan N; Wang R; Qi R; Gao Y; Rossetti S; Tandoi V; Yang M
    Chemosphere; 2018 Nov; 210():709-716. PubMed ID: 30036818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge.
    Li XY; Yang SF
    Water Res; 2007 Mar; 41(5):1022-30. PubMed ID: 16952388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of filamentous bacteria, belonging to candidate phylum KSB3, that are associated with bulking in methanogenic granular sludges.
    Yamada T; Yamauchi T; Shiraishi K; Hugenholtz P; Ohashi A; Harada H; Kamagata Y; Nakamura K; Sekiguchi Y
    ISME J; 2007 Jul; 1(3):246-55. PubMed ID: 18043635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical monitoring of activated sludge flocs in bulking and non-bulking conditions.
    Koivuranta E; Keskitalo J; Haapala A; Stoor T; Sarén M; Niinimäki J
    Environ Technol; 2013; 34(5-8):679-86. PubMed ID: 23837318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of temperature on the effectiveness of filamentous bacteria removal from activated sludge by rotifers.
    Pajdak-Stós A; Fiałkowska E
    Water Environ Res; 2012 Aug; 84(8):619-25. PubMed ID: 22953446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stable limited filamentous bulking through keeping the competition between floc-formers and filaments in balance.
    Guo J; Peng Y; Wang S; Yang X; Wang Z; Zhu A
    Bioresour Technol; 2012 Jan; 103(1):7-15. PubMed ID: 22029958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of feeding pattern and storage on the sludge settleability under aerobic conditions.
    Martins AM; Heijnen JJ; van Loosdrecht MC
    Water Res; 2003 Jun; 37(11):2555-70. PubMed ID: 12753833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Energy saving achieved by limited filamentous bulking under low dissolved oxygen: experimental validation in A/O process].
    Guo JH; Wang SY; Peng YZ; Zheng YN; Huang HJ; Ge SJ; Sun ZR
    Huan Jing Ke Xue; 2008 Dec; 29(12):3348-52. PubMed ID: 19256366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting the onset of filamentous bulking in biological wastewater treatment systems by exploiting image analysis information.
    Banadda EN; Smets IY; Jenné R; Van Impe JF
    Bioprocess Biosyst Eng; 2005 Aug; 27(5):339-48. PubMed ID: 16021475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphorus defficiency and sludge bulking.
    Turtin I; Vatansever A; Sanin FD
    Environ Technol; 2006 Jun; 27(6):613-21. PubMed ID: 16865917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.