BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 11472173)

  • 1. MD simulations of homomorphous PNA, DNA, and RNA single strands: characterization and comparison of conformations and dynamics.
    Sen S; Nilsson L
    J Am Chem Soc; 2001 Aug; 123(30):7414-22. PubMed ID: 11472173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of cyclohexyl modified peptide nucleic acids (PNA).
    Sharma S; Sonavane UB; Joshi RR
    J Biomol Struct Dyn; 2010 Apr; 27(5):663-76. PubMed ID: 20085383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics of potential rRNA binders: single-stranded nucleic acids and some analogues.
    Panecka J; Mura C; Trylska J
    J Phys Chem B; 2011 Jan; 115(3):532-46. PubMed ID: 21192664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of helix morphology on co-operative polyamide backbone conformational flexibility in peptide nucleic acid complexes.
    Topham CM; Smith JC
    J Mol Biol; 1999 Oct; 292(5):1017-38. PubMed ID: 10512700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique properties of purine/pyrimidine asymmetric PNA.DNA duplexes: differential stabilization of PNA.DNA duplexes by purines in the PNA strand.
    Sen A; Nielsen PE
    Biophys J; 2006 Feb; 90(4):1329-37. PubMed ID: 16326919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of RNA by amide modified backbone nucleic acids: molecular dynamics simulations of DNA-RNA hybrids in aqueous solution.
    Nina M; Fonné-Pfister R; Beaudegnies R; Chekatt H; Jung PM; Murphy-Kessabi F; De Mesmaeker A; Wendeborn S
    J Am Chem Soc; 2005 Apr; 127(16):6027-38. PubMed ID: 15839703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triplex-Forming Peptide Nucleic Acids with Extended Backbones.
    Kumar V; Brodyagin N; Rozners E
    Chembiochem; 2020 Dec; 21(23):3410-3416. PubMed ID: 32697857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical spectroscopic study of the effects of a single deoxyribose substitution in a ribose backbone: implications in RNA-RNA interaction.
    Lindqvist M; Sarkar M; Winqvist A; Rozners E; Strömberg R; Gräslund A
    Biochemistry; 2000 Feb; 39(7):1693-701. PubMed ID: 10677217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental study of mechanism and specificity of peptide nucleic acid (PNA) binding to duplex DNA.
    Kuhn H; Demidov VV; Nielsen PE; Frank-Kamenetskii MD
    J Mol Biol; 1999 Mar; 286(5):1337-45. PubMed ID: 10064701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PNA versus DNA: effects of structural fluctuations on electronic structure and hole-transport mechanisms.
    Hatcher E; Balaeff A; Keinan S; Venkatramani R; Beratan DN
    J Am Chem Soc; 2008 Sep; 130(35):11752-61. PubMed ID: 18693722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of overstretching transitions in single-stranded nucleic acids.
    Scholl ZN; Rabbi M; Lee D; Manson L; S-Gracz H; Marszalek PE
    Phys Rev Lett; 2013 Nov; 111(18):188302. PubMed ID: 24237568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Force Fields for Peptide Nucleic Acids with Optimized Backbone Torsion Parameters.
    Jasiński M; Feig M; Trylska J
    J Chem Theory Comput; 2018 Jul; 14(7):3603-3620. PubMed ID: 29791152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into why pyrrolidinyl peptide nucleic acid binding to DNA is more stable than the DNA x DNA duplex.
    Siriwong K; Chuichay P; Saen-oon S; Suparpprom C; Vilaivan T; Hannongbua S
    Biochem Biophys Res Commun; 2008 Aug; 372(4):765-71. PubMed ID: 18514065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational studies of chiral D-Lys-PNA and achiral PNA system in binding with DNA or RNA through a molecular dynamics approach.
    Autiero I; Saviano M; Langella E
    Eur J Med Chem; 2015 Feb; 91():109-17. PubMed ID: 25112690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Tail-Clamp Peptide Nucleic Acid Tethered with Azobenzene Linker for Sequence-Specific Detection of Homopurine DNA.
    Sawada S; Takao T; Kato N; Kaihatsu K
    Molecules; 2017 Oct; 22(11):. PubMed ID: 29077023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the structural features and stability of peptide nucleic acid with a D-prolyl-2-aminocyclopentane carboxylic acid backbone that binds to DNA and RNA.
    Poomsuk N; Vilaivan T; Siriwong K
    J Mol Graph Model; 2018 Sep; 84():36-42. PubMed ID: 29909272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide nucleic acid (PNA) conformation and polymorphism in PNA-DNA and PNA-RNA hybrids.
    Almarsson O; Bruice TC
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9542-6. PubMed ID: 8415738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focus on PNA Flexibility and RNA Binding using Molecular Dynamics and Metadynamics.
    Verona MD; Verdolino V; Palazzesi F; Corradini R
    Sci Rep; 2017 Feb; 7():42799. PubMed ID: 28211525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Study of the Hybridization between RNA and Modified Oligonucleotides.
    Jing Z; Qi R; Thibonnier M; Ren P
    J Chem Theory Comput; 2019 Nov; 15(11):6422-6432. PubMed ID: 31553600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation preferences of backbone secondary amide functional groups in peptide nucleic acid complexes: quantum chemical calculations reveal an intrinsic preference of cationic D-amino acid-based chiral PNA analogues for the P-form.
    Topham CM; Smith JC
    Biophys J; 2007 Feb; 92(3):769-86. PubMed ID: 17071666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.