BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11472213)

  • 1. Structure-activity studies of ground- and transition-state analogue inhibitors of cyclophilin.
    Wang HC; Kim K; Bakhtiar R; Germanas JP
    J Med Chem; 2001 Aug; 44(16):2593-600. PubMed ID: 11472213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptidyl-prolyl isomerase inhibitors.
    Wang XJ; Etzkorn FA
    Biopolymers; 2006; 84(2):125-46. PubMed ID: 16302169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of novel Cyclophilin D inhibitors starting from three dimensional fragments with millimolar potencies.
    Grädler U; Schwarz D; Blaesse M; Leuthner B; Johnson TL; Bernard F; Jiang X; Marx A; Gilardone M; Lemoine H; Roche D; Jorand-Lebrun C
    Bioorg Med Chem Lett; 2019 Dec; 29(23):126717. PubMed ID: 31635932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and evaluation of Glypsi(PO(2)R-N)Pro-containing pseudopeptides as novel inhibitors of the human cyclophilin hCyp-18.
    Demange L; Moutiez M; Dugave C
    J Med Chem; 2002 Aug; 45(18):3928-33. PubMed ID: 12190314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of cis-trans isomerization of prolyl peptides by cyclophilin.
    Hur S; Bruice TC
    J Am Chem Soc; 2002 Jun; 124(25):7303-13. PubMed ID: 12071739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations of cyclophilin interactions with oligopeptides containing proline by affinity capillary electrophoresis.
    Kiessig S; Thunecke F
    J Chromatogr A; 2002 Dec; 982(2):275-83. PubMed ID: 12489884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p53 Is Potentially Regulated by Cyclophilin D in the Triple-Proline Loop of the DNA Binding Domain.
    Kumutima J; Yao XQ; Hamelberg D
    Biochemistry; 2021 Mar; 60(8):597-606. PubMed ID: 33591178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic combinatorial self-assembly of cyclophilin hCyp-18 ligands through oxorhenium coordination.
    Clavaud C; Le Gal J; Thai R; Moutiez M; Dugave C
    Chembiochem; 2008 Jul; 9(11):1823-9. PubMed ID: 18604836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From chemical tools to clinical medicines: nonimmunosuppressive cyclophilin inhibitors derived from the cyclosporin and sanglifehrin scaffolds.
    Sweeney ZK; Fu J; Wiedmann B
    J Med Chem; 2014 Sep; 57(17):7145-59. PubMed ID: 24831536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of peptidyl-prolyl cis/trans isomerase activity by substrate analog structures: thioxo tetrapeptide-4-nitroanilides.
    Schutkowski M; Wöllner S; Fischer G
    Biochemistry; 1995 Oct; 34(40):13016-26. PubMed ID: 7548060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligopeptide cyclophilin inhibitors: a reassessment.
    Schumann M; Jahreis G; Kahlert V; Lücke C; Fischer G
    Eur J Med Chem; 2011 Nov; 46(11):5556-61. PubMed ID: 21963115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptidyl prolyl cis/trans-isomerases: comparative reactivities of cyclophilins, FK506-binding proteins, and parvulins with fluorinated oligopeptide and protein substrates.
    Golbik R; Yu C; Weyher-Stingl E; Huber R; Moroder L; Budisa N; Schiene-Fischer C
    Biochemistry; 2005 Dec; 44(49):16026-34. PubMed ID: 16331962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stereoselective cyclization strategy for the preparation of γ-lactams and their use in the synthesis of α-methyl-β-proline.
    Banerjee S; Smith J; Smith J; Faulkner C; Masterson DS
    J Org Chem; 2012 Dec; 77(23):10925-30. PubMed ID: 23126540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosidase inhibition by ring-modified castanospermine analogues: tackling enzyme selectivity by inhibitor tailoring.
    Aguilar-Moncayo M; Gloster TM; Turkenburg JP; García-Moreno MI; Ortiz Mellet C; Davies GJ; García Fernández JM
    Org Biomol Chem; 2009 Jul; 7(13):2738-47. PubMed ID: 19532990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclophilin inhibition as potential therapy for liver diseases.
    Naoumov NV
    J Hepatol; 2014 Nov; 61(5):1166-74. PubMed ID: 25048953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds.
    Dunyak BM; Gestwicki JE
    J Med Chem; 2016 Nov; 59(21):9622-9644. PubMed ID: 27409354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational insight into small molecule inhibition of cyclophilins.
    Sambasivarao SV; Acevedo O
    J Chem Inf Model; 2011 Feb; 51(2):475-82. PubMed ID: 21194235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and peptidyl-prolyl isomerase inhibitory activity of quinoxalines as ligands of cyclophilin A.
    Wang F; Chen J; Liu X; Shen X; He X; Jiang H; Bai D
    Chem Pharm Bull (Tokyo); 2006 Mar; 54(3):372-6. PubMed ID: 16508195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and biological evaluation of B-ring analogues of (-)-rhazinilam.
    Décor A; Monse B; Martin MT; Chiaroni A; Thoret S; Guénard D; Guéritte F; Baudoin O
    Bioorg Med Chem; 2006 Apr; 14(7):2314-32. PubMed ID: 16314101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial self-assembly of cyclophilin hCyp-18 ligands through rhenium coordination.
    Clavaud C; Heckenroth M; Stricane C; Lelait MA; Ménez A; Dugave C
    Chembiochem; 2006 Sep; 7(9):1352-5. PubMed ID: 16835860
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.