These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 11472242)
1. A structural approach into human tryptophan hydroxylase and its implications for the regulation of serotonin biosynthesis. Martínez A; Knappskog PM; Haavik J Curr Med Chem; 2001 Jul; 8(9):1077-91. PubMed ID: 11472242 [TBL] [Abstract][Full Text] [Related]
2. Identification of substrate orienting and phosphorylation sites within tryptophan hydroxylase using homology-based molecular modeling. Jiang GC; Yohrling GJ; Schmitt JD; Vrana KE J Mol Biol; 2000 Sep; 302(4):1005-17. PubMed ID: 10993738 [TBL] [Abstract][Full Text] [Related]
3. Conformation of the substrate and pterin cofactor bound to human tryptophan hydroxylase. Important role of Phe313 in substrate specificity. McKinney J; Teigen K; Frøystein NA; Salaün C; Knappskog PM; Haavik J; Martínez A Biochemistry; 2001 Dec; 40(51):15591-601. PubMed ID: 11747434 [TBL] [Abstract][Full Text] [Related]
4. Advances in the molecular characterization of tryptophan hydroxylase. Mockus SM; Vrana KE J Mol Neurosci; 1998 Jun; 10(3):163-79. PubMed ID: 9770640 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of tryptophan hydroxylase with bound amino acid substrate. Windahl MS; Petersen CR; Christensen HE; Harris P Biochemistry; 2008 Nov; 47(46):12087-94. PubMed ID: 18937498 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional structure of human tryptophan hydroxylase and its implications for the biosynthesis of the neurotransmitters serotonin and melatonin. Wang L; Erlandsen H; Haavik J; Knappskog PM; Stevens RC Biochemistry; 2002 Oct; 41(42):12569-74. PubMed ID: 12379098 [TBL] [Abstract][Full Text] [Related]
8. Tetrahydrobiopterin binding to aromatic amino acid hydroxylases. Ligand recognition and specificity. Teigen K; Dao KK; McKinney JA; Gorren AC; Mayer B; Frøystein NA; Haavik J; Martínez A J Med Chem; 2004 Nov; 47(24):5962-71. PubMed ID: 15537351 [TBL] [Abstract][Full Text] [Related]
9. Modeled ligand-protein complexes elucidate the origin of substrate specificity and provide insight into catalytic mechanisms of phenylalanine hydroxylase and tyrosine hydroxylase. Maass A; Scholz J; Moser A Eur J Biochem; 2003 Mar; 270(6):1065-75. PubMed ID: 12631267 [TBL] [Abstract][Full Text] [Related]
10. Cloning and expression of recombinant human pineal tryptophan hydroxylase in Escherichia coli: purification and characterization of the cloned enzyme. Kowlessur D; Kaufman S Biochim Biophys Acta; 1999 Oct; 1434(2):317-30. PubMed ID: 10525150 [TBL] [Abstract][Full Text] [Related]
11. A chimeric tyrosine/tryptophan hydroxylase. The tyrosine hydroxylase regulatory domain serves to stabilize enzyme activity. Mockus SM; Kumer SC; Vrana KE J Mol Neurosci; 1997 Aug; 9(1):35-48. PubMed ID: 9356925 [TBL] [Abstract][Full Text] [Related]
12. Isoform-Specific Substrate Inhibition Mechanism of Human Tryptophan Hydroxylase. Tidemand KD; Peters GH; Harris P; Stensgaard E; Christensen HEM Biochemistry; 2017 Nov; 56(46):6155-6164. PubMed ID: 29035515 [TBL] [Abstract][Full Text] [Related]
13. Pharmacological Chaperones that Protect Tetrahydrobiopterin Dependent Aromatic Amino Acid Hydroxylases Through Different Mechanisms. Hole M; Jorge-Finnigan A; Underhaug J; Teigen K; Martinez A Curr Drug Targets; 2016; 17(13):1515-26. PubMed ID: 26953246 [TBL] [Abstract][Full Text] [Related]