BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11472306)

  • 21. Variable-frequency-train stimulation of skeletal muscle after spinal cord injury.
    Bickel CS; Slade JM; VanHiel LR; Warren GL; Dudley GA
    J Rehabil Res Dev; 2004; 41(1):33-40. PubMed ID: 15273895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of activation frequency and force on low-frequency fatigue in human skeletal muscle.
    Binder-Macleod SA; Russ DW
    J Appl Physiol (1985); 1999 Apr; 86(4):1337-46. PubMed ID: 10194220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation.
    Thomas CK; Griffin L; Godfrey S; Ribot-Ciscar E; Butler JE
    J Neurophysiol; 2003 Apr; 89(4):2055-64. PubMed ID: 12611940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mathematical model that predicts the force-frequency relationship of human skeletal muscle.
    Ding J; Wexler AS; Binder-Macleod SA
    Muscle Nerve; 2002 Oct; 26(4):477-85. PubMed ID: 12362412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrical stimulation of human tibialis anterior: (A) contractile properties are stable over a range of submaximal voltages; (B) high- and low-frequency fatigue are inducible and reliably assessable at submaximal voltages.
    Hanchard NC; Williamson M; Caley RW; Cooper RG
    Clin Rehabil; 1998 Oct; 12(5):413-27. PubMed ID: 9796932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of muscle activation on fatigue and metabolism in human skeletal muscle.
    Russ DW; Vandenborne K; Walter GA; Elliott M; Binder-Macleod SA
    J Appl Physiol (1985); 2002 May; 92(5):1978-86. PubMed ID: 11960948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Augmentation of the contraction force of human thenar muscles by and during brief discharge trains.
    Howells J; Trevillion L; Jankelowitz S; Burke D
    Muscle Nerve; 2006 Mar; 33(3):384-92. PubMed ID: 16435342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.
    Augustsson J; Thomeé R; Lindén C; Folkesson M; Tranberg R; Karlsson J
    Scand J Med Sci Sports; 2006 Apr; 16(2):111-20. PubMed ID: 16533349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variable-frequency train stimulation of canine latissimus dorsi muscle during shortening contractions.
    George DT; Binder-Macleod SA; Delosso TN; Santamore WP
    J Appl Physiol (1985); 1997 Sep; 83(3):994-1001. PubMed ID: 9292488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variable-frequency trains offset low-frequency fatigue in human skeletal muscle.
    Russ DW; Binder-Macleod SA
    Muscle Nerve; 1999 Jul; 22(7):874-82. PubMed ID: 10398205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contractile benefits of doublet-initiated low-frequency stimulation in rat extensor digitorum longus muscle exposed to high extracellular [K
    Pedersen KK; Nielsen OB; Overgaard K
    Am J Physiol Cell Physiol; 2019 Jul; 317(1):C39-C47. PubMed ID: 30969780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction of the fatigue-induced force decline in human skeletal muscle by optimized stimulation trains.
    Binder-Macleod SA; Lee SC; Baadte SA
    Arch Phys Med Rehabil; 1997 Oct; 78(10):1129-37. PubMed ID: 9339165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of activation frequency on dynamic performance of human fresh and fatigued muscles.
    Lee SC; Binder-Macleod SA
    J Appl Physiol (1985); 2000 Jun; 88(6):2166-75. PubMed ID: 10846032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel stimulation pattern improves performance during repetitive dynamic contractions.
    Kebaetse MB; Lee SC; Binder-Macleod SA
    Muscle Nerve; 2001 Jun; 24(6):744-52. PubMed ID: 11360257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of electrical stimulation frequency on skeletal muscle force and fatigue.
    Dreibati B; Lavet C; Pinti A; Poumarat G
    Ann Phys Rehabil Med; 2010 May; 53(4):266-71, 271-7. PubMed ID: 20430713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of electrical stimulation pattern on quadriceps isometric force and fatigue in individuals with spinal cord injury.
    Deley G; Denuziller J; Babault N; Taylor JA
    Muscle Nerve; 2015 Aug; 52(2):260-4. PubMed ID: 25430542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of stimulation frequencies and patterns on performance of repetitive, nonisometric tasks.
    Kebaetse MB; Turner AE; Binder-Macleod SA
    J Appl Physiol (1985); 2002 Jan; 92(1):109-16. PubMed ID: 11744649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catchlike property of skeletal muscle: recent findings and clinical implications.
    Binder-Macleod S; Kesar T
    Muscle Nerve; 2005 Jun; 31(6):681-93. PubMed ID: 15736271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catchlike property of human muscle during isovelocity movements.
    Binder-Macleod SA; Lee SC
    J Appl Physiol (1985); 1996 Jun; 80(6):2051-9. PubMed ID: 8806913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of activation frequency on cellular signalling pathways during fatiguing contractions in rat skeletal muscle.
    Russ DW; Lovering RM
    Exp Physiol; 2006 Nov; 91(6):957-66. PubMed ID: 16857718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.