These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11472515)

  • 1. Evaluation of spore extraction and purification methods for selective recovery of viable Bacillus anthracis spores.
    Dragon DC; Rennie RP
    Lett Appl Microbiol; 2001 Aug; 33(2):100-5. PubMed ID: 11472515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of a selective media for the isolation of B. anthracis from soils.
    Luna VA; Gulledge J; Cannons AC; Amuso PT
    J Microbiol Methods; 2009 Dec; 79(3):301-6. PubMed ID: 19808058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive and rapid quantitative detection of anthrax spores isolated from soil samples by real-time PCR.
    Ryu C; Lee K; Yoo C; Seong WK; Oh HB
    Microbiol Immunol; 2003; 47(10):693-9. PubMed ID: 14605435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of anthrax spores in endemic regions of northern Canada.
    Dragon DC; Rennie RP; Elkin BT
    J Appl Microbiol; 2001 Sep; 91(3):435-41. PubMed ID: 11556908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence, recognition, and reversion of spontaneous, sporulation-deficient Bacillus anthracis mutants that arise during laboratory culture.
    Sastalla I; Leppla SH
    Microbes Infect; 2012 May; 14(5):387-91. PubMed ID: 22166343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of Bacillus anthracis from soil in selected high-risk areas of Zimbabwe.
    Chikerema SM; Pfukenyi DM; Hang'ombe BM; L'Abee-Lund TM; Matope G
    J Appl Microbiol; 2012 Dec; 113(6):1389-95. PubMed ID: 22984812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of anthrax spores from the air by real-time PCR.
    Makino SI; Cheun HI; Watarai M; Uchida I; Takeshi K
    Lett Appl Microbiol; 2001 Sep; 33(3):237-40. PubMed ID: 11555211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the real-time PCR for the detection of airborne microbial pathogens in reference to the anthrax spores.
    Makino S; Cheun HI
    J Microbiol Methods; 2003 May; 53(2):141-7. PubMed ID: 12654485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and effective detection of anthrax spores in soil by PCR.
    Cheun HI; Makino SI; Watarai M; Erdenebaatar J; Kawamoto K; Uchida I
    J Appl Microbiol; 2003; 95(4):728-33. PubMed ID: 12969286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of two selective media for the isolation of Bacillus anthracis.
    Marston CK; Beesley C; Helsel L; Hoffmaster AR
    Lett Appl Microbiol; 2008 Jul; 47(1):25-30. PubMed ID: 18554264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening for anthrax occurrence in soil of flooded rural areas in Poland after rainfalls in spring 2010.
    Zasada AA; Formińska K; Ogrodnik A; Gierczyński R; Jagielski M
    Ann Agric Environ Med; 2014; 21(3):460-3. PubMed ID: 25292110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of a sample processing protocol for recovery of Bacillus anthracis spores from soil.
    Silvestri EE; Feldhake D; Griffin D; Lisle J; Nichols TL; Shah SR; Pemberton A; Schaefer FW
    J Microbiol Methods; 2016 Nov; 130():6-13. PubMed ID: 27546718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of low numbers of Bacillus anthracis spores in three soils using five commercial DNA extraction methods with and without an enrichment step.
    Gulledge JS; Luna VA; Luna AJ; Zartman R; Cannons AC
    J Appl Microbiol; 2010 Nov; 109(5):1509-20. PubMed ID: 20553343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil.
    France B; Bell W; Chang E; Scholten T
    PLoS One; 2015; 10(12):e0145799. PubMed ID: 26714315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of five commercial nucleic acid extraction kits for their ability to inactivate Bacillus anthracis spores and comparison of DNA yields from spores and spiked environmental samples.
    Dauphin LA; Moser BD; Bowen MD
    J Microbiol Methods; 2009 Jan; 76(1):30-7. PubMed ID: 18824041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Bacillus anthracis spores from environmental water using bioluminescent reporter phage.
    Nguyen C; Makkar R; Sharp NJ; Page MA; Molineux IJ; Schofield DA
    J Appl Microbiol; 2017 Nov; 123(5):1184-1193. PubMed ID: 28833845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular detection of anthrax spores on animal fibres.
    Levi K; Higham JL; Coates D; Hamlyn PF
    Lett Appl Microbiol; 2003; 36(6):418-22. PubMed ID: 12753252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid sporulation of Bacillus anthracis in a high iron, glucose-free medium.
    Purohit M; Sassi-Gaha S; Rest RF
    J Microbiol Methods; 2010 Sep; 82(3):282-7. PubMed ID: 20621133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of tools for environmental sampling of Bacillus anthracis spores.
    Fujinami Y; Hosokawa-Muto J; Mizuno N
    Forensic Sci Int; 2015 Dec; 257():376-378. PubMed ID: 26528669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Most-probable-number rapid viability PCR method to detect viable spores of Bacillus anthracis in swab samples.
    Létant SE; Kane SR; Murphy GA; Alfaro TM; Hodges LR; Rose LJ; Raber E
    J Microbiol Methods; 2010 May; 81(2):200-2. PubMed ID: 20193716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.