These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 11472905)
1. Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil. Koch B; Worm J; Jensen LE; Højberg O; Nybroe O Appl Environ Microbiol; 2001 Aug; 67(8):3363-70. PubMed ID: 11472905 [TBL] [Abstract][Full Text] [Related]
2. Nitrogen availability to Pseudomonas fluorescens DF57 is limited during decomposition of barley straw in bulk soil and in the barley rhizosphere. Jensen LE; Nybroe O Appl Environ Microbiol; 1999 Oct; 65(10):4320-8. PubMed ID: 10508054 [TBL] [Abstract][Full Text] [Related]
3. Distribution of metabolic activity and phosphate starvation response of lux-tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere. Kragelund L; Hosbond C; Nybroe O Appl Environ Microbiol; 1997 Dec; 63(12):4920-8. PubMed ID: 9406412 [TBL] [Abstract][Full Text] [Related]
4. Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Højberg O; Schnider U; Winteler HV; Sørensen J; Haas D Appl Environ Microbiol; 1999 Sep; 65(9):4085-93. PubMed ID: 10473420 [TBL] [Abstract][Full Text] [Related]
5. A tripartite microbial reporter gene system for real-time assays of soil nutrient status. Standing D; Meharg AA; Killham K FEMS Microbiol Lett; 2003 Mar; 220(1):35-9. PubMed ID: 12644225 [TBL] [Abstract][Full Text] [Related]
6. Initial characterization of a bolA homologue from Pseudomonas fluorescens indicates different roles for BolA-like proteins in P. fluorescens and Escherichia coli. Koch B; Nybroe O FEMS Microbiol Lett; 2006 Sep; 262(1):48-56. PubMed ID: 16907738 [TBL] [Abstract][Full Text] [Related]
7. Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens ST. Santos PM; Blatny JM; Di Bartolo I; Valla S; Zennaro E Appl Environ Microbiol; 2000 Apr; 66(4):1305-10. PubMed ID: 10742204 [TBL] [Abstract][Full Text] [Related]
8. Use of in vivo expression technology to identify genes important in growth and survival of Pseudomonas fluorescens Pf0-1 in soil: discovery of expressed sequences with novel genetic organization. Silby MW; Levy SB J Bacteriol; 2004 Nov; 186(21):7411-9. PubMed ID: 15489453 [TBL] [Abstract][Full Text] [Related]
9. The outer membrane protein OprF and the sigma factor SigX regulate antibiotic production in Pseudomonas fluorescens 2P24. Li X; Gu GQ; Chen W; Gao LJ; Wu XH; Zhang LQ Microbiol Res; 2018 Jan; 206():159-167. PubMed ID: 29146252 [TBL] [Abstract][Full Text] [Related]
10. Multiple-level regulation of 2,4-diacetylphloroglucinol production by the sigma regulator PsrA in Pseudomonas fluorescens 2P24. Wu X; Liu J; Zhang W; Zhang L PLoS One; 2012; 7(11):e50149. PubMed ID: 23209661 [TBL] [Abstract][Full Text] [Related]
11. Cadmium-regulated gene fusions in Pseudomonas fluorescens. Rossbach S; Kukuk ML; Wilson TL; Feng SF; Pearson MM; Fisher MA Environ Microbiol; 2000 Aug; 2(4):373-82. PubMed ID: 11234925 [TBL] [Abstract][Full Text] [Related]
12. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565 [TBL] [Abstract][Full Text] [Related]
13. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Loper JE; Henkels MD Appl Environ Microbiol; 1997 Jan; 63(1):99-105. PubMed ID: 8979343 [TBL] [Abstract][Full Text] [Related]
14. Genetic analysis of the histidine utilization (hut) genes in Pseudomonas fluorescens SBW25. Zhang XX; Rainey PB Genetics; 2007 Aug; 176(4):2165-76. PubMed ID: 17717196 [TBL] [Abstract][Full Text] [Related]
15. RpoN (sigma54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Péchy-Tarr M; Bottiglieri M; Mathys S; Lejbølle KB; Schnider-Keel U; Maurhofer M; Keel C Mol Plant Microbe Interact; 2005 Mar; 18(3):260-72. PubMed ID: 15782640 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional regulation of the iron-responsive sigma factor gene pbrA. Sexton R; Gill PR; Dowling DN; O'Gara F Mol Gen Genet; 1996 Jan; 250(1):50-8. PubMed ID: 8569687 [TBL] [Abstract][Full Text] [Related]
17. The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0. Schnider-Keel U; Lejbølle KB; Baehler E; Haas D; Keel C Appl Environ Microbiol; 2001 Dec; 67(12):5683-93. PubMed ID: 11722923 [TBL] [Abstract][Full Text] [Related]
18. The effect of iron limitation on the transcriptome and proteome of Pseudomonas fluorescens Pf-5. Lim CK; Hassan KA; Tetu SG; Loper JE; Paulsen IT PLoS One; 2012; 7(6):e39139. PubMed ID: 22723948 [TBL] [Abstract][Full Text] [Related]
19. Persistence and cell culturability of biocontrol strain Pseudomonas fluorescens CHA0 under plough pan conditions in soil and influence of the anaerobic regulator gene anr. Mascher F; Schnider-Keel U; Haas D; Défago G; Moënne-Loccoz Y Environ Microbiol; 2003 Feb; 5(2):103-15. PubMed ID: 12558593 [TBL] [Abstract][Full Text] [Related]
20. Dynamic responses of Pseudomonas fluorescens DF57 to nitrogen or carbon source addition. Roca C; Olsson L J Biotechnol; 2001 Mar; 86(1):39-50. PubMed ID: 11223143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]