These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 11473020)

  • 1. 0j.py: a software tool for low complexity proteins and protein domains.
    Wise MJ
    Bioinformatics; 2001; 17 Suppl 1():S288-95. PubMed ID: 11473020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-globular domains in protein sequences: automated segmentation using complexity measures.
    Wootton JC
    Comput Chem; 1994 Sep; 18(3):269-85. PubMed ID: 7952898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DIVCLUS: an automatic method in the GEANFAMMER package that finds homologous domains in single- and multi-domain proteins.
    Park J; Teichmann SA
    Bioinformatics; 1998; 14(2):144-50. PubMed ID: 9545446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive methods using protein sequences.
    Baxevanis AD; Landsman D
    Methods Biochem Anal; 1998; 39():246-67. PubMed ID: 9707934
    [No Abstract]   [Full Text] [Related]  

  • 5. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SplitTester: software to identify domains responsible for functional divergence in protein family.
    Gao X; Vander Velden KA; Voytas DF; Gu X
    BMC Bioinformatics; 2005 Jun; 6():137. PubMed ID: 15929795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid similarity search of proteins using alignments of domain arrangements.
    Terrapon N; Weiner J; Grath S; Moore AD; Bornberg-Bauer E
    Bioinformatics; 2014 Jan; 30(2):274-81. PubMed ID: 23828785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide analysis of the WW domain-containing protein genes in silkworm and their expansion in eukaryotes.
    Meng G; Dai F; Tong X; Li N; Ding X; Song J; Lu C
    Mol Genet Genomics; 2015 Jun; 290(3):807-24. PubMed ID: 25424044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational prediction of protein-protein interactions.
    Obenauer JC; Yaffe MB
    Methods Mol Biol; 2004; 261():445-68. PubMed ID: 15064475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SubSeqer: a graph-based approach for the detection and identification of repetitive elements in low-complexity sequences.
    He D; Parkinson J
    Bioinformatics; 2008 Apr; 24(7):1016-7. PubMed ID: 18304932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel algorithm for identifying low-complexity regions in a protein sequence.
    Li X; Kahveci T
    Bioinformatics; 2006 Dec; 22(24):2980-7. PubMed ID: 17018537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple alignment of protein sequences with repeats and rearrangements.
    Phuong TM; Do CB; Edgar RC; Batzoglou S
    Nucleic Acids Res; 2006; 34(20):5932-42. PubMed ID: 17068081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Within the twilight zone: a sensitive profile-profile comparison tool based on information theory.
    Yona G; Levitt M
    J Mol Biol; 2002 Feb; 315(5):1257-75. PubMed ID: 11827492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. dissectHMMER: a HMMER-based score dissection framework that statistically evaluates fold-critical sequence segments for domain fold similarity.
    Wong WC; Yap CK; Eisenhaber B; Eisenhaber F
    Biol Direct; 2015 Aug; 10():39. PubMed ID: 26228544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of low-complexity sequences in the formation of novel protein coding sequences.
    Toll-Riera M; Radó-Trilla N; Martys F; Albà MM
    Mol Biol Evol; 2012 Mar; 29(3):883-6. PubMed ID: 22045997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHOG-BLAST--a new generation tool for fast similarity search of protein families.
    Merkeev IV; Mironov AA
    BMC Evol Biol; 2006 Jun; 6():51. PubMed ID: 16792802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Annotation of proteins of unknown function: initial enzyme results.
    McKay T; Hart K; Horn A; Kessler H; Dodge G; Bardhi K; Bardhi K; Mills JL; Bernstein HJ; Craig PA
    J Struct Funct Genomics; 2015 Mar; 16(1):43-54. PubMed ID: 25630330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SnapDRAGON: a method to delineate protein structural domains from sequence data.
    George RA; Heringa J
    J Mol Biol; 2002 Feb; 316(3):839-51. PubMed ID: 11866536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.