BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 11473548)

  • 21. Characterization of a homolog of human bone morphogenetic protein 1 in the embryo of the sea urchin, Strongylocentrotus purpuratus.
    Hwang SP; Partin JS; Lennarz WJ
    Development; 1994 Mar; 120(3):559-68. PubMed ID: 8162855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus.
    Martik ML; McClay DR
    Mech Dev; 2017 Dec; 148():3-10. PubMed ID: 28684256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium.
    Kominami T; Takata H
    Dev Growth Differ; 2004 Aug; 46(4):309-26. PubMed ID: 15367199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of lysyl oxidase and collagen crosslinking during sea urchin development.
    Butler E; Hardin J; Benson S
    Exp Cell Res; 1987 Nov; 173(1):174-82. PubMed ID: 2890532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amino acid derived sulfonamide hydroxamates as inhibitors of procollagen C-proteinase. Part 2: Solid-phase optimization of side chains.
    Dankwardt SM; Abbot SC; Broka CA; Martin RL; Chan CS; Springman EB; Van Wart HE; Walker KA
    Bioorg Med Chem Lett; 2002 Apr; 12(8):1233-5. PubMed ID: 11934595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Archenteron elongation in the sea urchin embryo is a microtubule-independent process.
    Hardin JD
    Dev Biol; 1987 May; 121(1):253-62. PubMed ID: 3552789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The interaction of recombinant subdomains of the procollagen C-proteinase with procollagen I provides a quantitative explanation for functional differences between the two splice variants, mammalian tolloid and bone morphogenetic protein 1.
    Hintze V; Höwel M; Wermter C; Grosse Berkhoff E; Becker-Pauly C; Beermann B; Yiallouros I; Stöcker W
    Biochemistry; 2006 May; 45(21):6741-8. PubMed ID: 16716085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The onset of collagen synthesis in sea urchin embryos.
    Golob R; Chetsanga CJ; Doty P
    Biochim Biophys Acta; 1974 Apr; 349(1):135-41. PubMed ID: 11400433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton.
    Kitajima T; Urakami H
    Dev Growth Differ; 2000 Aug; 42(4):295-306. PubMed ID: 10969729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus.
    Kitajima T; Tomita M; Killian CE; Akasaka K; Wilt FH
    Dev Growth Differ; 1996 Dec; 38(6):687-95. PubMed ID: 11541911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression.
    Benson S; Sucov H; Stephens L; Davidson E; Wilt F
    Dev Biol; 1987 Apr; 120(2):499-506. PubMed ID: 3556766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An N-linked carbohydrate-containing extracellular matrix determinant plays a key role in sea urchin gastrulation.
    Ingersoll EP; Ettensohn CA
    Dev Biol; 1994 Jun; 163(2):351-66. PubMed ID: 7515360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collagen metabolism and spicule formation in sea urchin micromeres.
    Blankenship J; Benson S
    Exp Cell Res; 1984 May; 152(1):98-104. PubMed ID: 6714328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The origin of spicule-forming cells in a 'primitive' sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells.
    Wray GA; McClay DR
    Development; 1988 Jun; 103(2):305-15. PubMed ID: 3066611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbohydrate involvement in cellular interactions in sea urchin gastrulation.
    Khurrum M; Hernandez A; Eskalaei M; Badali O; Coyle-Thompson C; Oppenheimer SB
    Acta Histochem; 2004; 106(2):97-106. PubMed ID: 15147630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein tyrosine kinase activity following fertilization is required to complete gastrulation, but not for initial differentiation of endoderm and mesoderm in the sea urchin embryo.
    Livingston BT; VanWinkle CE; Kinsey WH
    Dev Biol; 1998 Jan; 193(1):90-9. PubMed ID: 9466890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate-specific modulation of a multisubstrate proteinase. C-terminal processing of fibrillar procollagens is the only BMP-1-dependent activity to be enhanced by PCPE-1.
    Moali C; Font B; Ruggiero F; Eichenberger D; Rousselle P; François V; Oldberg A; Bruckner-Tuderman L; Hulmes DJ
    J Biol Chem; 2005 Jun; 280(25):24188-94. PubMed ID: 15834133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a metalloproteinase: a late stage specific gelatinase activity in the sea urchin embryo.
    Robinson JJ
    J Cell Biochem; 1997 Sep; 66(3):337-45. PubMed ID: 9257190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.