BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 11473643)

  • 1. Compensated heart failure predisposes to outer medullary tubular injury: studies in rats.
    Goldfarb M; Abassi Z; Rosen S; Shina A; Brezis M; Heyman SN
    Kidney Int; 2001 Aug; 60(2):607-13. PubMed ID: 11473643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-acetylcysteine ameliorates renal microcirculation: studies in rats.
    Heyman SN; Goldfarb M; Shina A; Karmeli F; Rosen S
    Kidney Int; 2003 Feb; 63(2):634-41. PubMed ID: 12631128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endotoxin-induced renal failure. II. A role for tubular hypoxic damage.
    Heyman SN; Rosen S; Darmon D; Goldfarb M; Bitz H; Shina A; Brezis M
    Exp Nephrol; 2000; 8(4-5):275-82. PubMed ID: 10940727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal microcirculation and tissue damage during acute ureteral obstruction in the rat: effect of saline infusion, indomethacin and radiocontrast.
    Heyman SN; Fuchs S; Jaffe R; Shina A; Ellezian L; Brezis M; Rosen S
    Kidney Int; 1997 Mar; 51(3):653-63. PubMed ID: 9067896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat.
    Agmon Y; Peleg H; Greenfeld Z; Rosen S; Brezis M
    J Clin Invest; 1994 Sep; 94(3):1069-75. PubMed ID: 8083347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute-on-chronic renal failure in the rat: functional compensation and hypoxia tolerance.
    Goldfarb M; Rosenberger C; Abassi Z; Shina A; Zilbersat F; Eckardt KU; Rosen S; Heyman SN
    Am J Nephrol; 2006; 26(1):22-33. PubMed ID: 16508244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of poly(ADP-ribose) polymerase inhibition on outer medullary hypoxic damage.
    Darmon D; Goldfarb M; Shina A; Rosen S; Heyman SN
    Nephron Physiol; 2003; 95(1):p1-9. PubMed ID: 14520006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute renal failure with selective medullary injury in the rat.
    Heyman SN; Brezis M; Reubinoff CA; Greenfeld Z; Lechene C; Epstein FH; Rosen S
    J Clin Invest; 1988 Aug; 82(2):401-12. PubMed ID: 3403711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximal tubular injury attenuates outer medullary hypoxic damage: studies in perfused rat kidneys.
    Heyman SN; Shina A; Brezis M; Rosen S
    Exp Nephrol; 2002; 10(4):259-66. PubMed ID: 12097829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myoglobinuric acute renal failure in the rat: a role for medullary hypoperfusion, hypoxia, and tubular obstruction.
    Heyman SN; Rosen S; Fuchs S; Epstein FH; Brezis M
    J Am Soc Nephrol; 1996 Jul; 7(7):1066-74. PubMed ID: 8829123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage.
    Basile DP; Donohoe DL; Roethe K; Mattson DL
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F338-48. PubMed ID: 12388385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nicotine on the renal microcirculation in anesthetized rats: a potential for medullary hypoxic injury?
    Heyman SN; Goldfarb M; Rosenberger C; Shina A; Rosen S
    Am J Nephrol; 2005; 25(3):226-32. PubMed ID: 15908742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-arginine reduces tubular cell injury in acute post-ischaemic renal failure.
    Jerkić M; Varagić J; Jovović D; Radujković-Kuburović G; Nastić-Mirić D; Adanja-Grujić G; Marković-Lipkovski J; Dimitrijević J; Miloradović Z; Vojvodić SB
    Nephrol Dial Transplant; 1999 Jun; 14(6):1398-407. PubMed ID: 10382999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Up-regulation of HIF in experimental acute renal failure: evidence for a protective transcriptional response to hypoxia.
    Rosenberger C; Heyman SN; Rosen S; Shina A; Goldfarb M; Griethe W; Frei U; Reinke P; Bachmann S; Eckardt KU
    Kidney Int; 2005 Feb; 67(2):531-42. PubMed ID: 15673301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endotoxin-induced renal failure. I. A role for altered renal microcirculation.
    Heyman SN; Darmon D; Goldfarb M; Bitz H; Shina A; Rosen S; Brezis M
    Exp Nephrol; 2000; 8(4-5):266-74. PubMed ID: 10940726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased nitric oxide synthase activity despite lack of response to endothelium-dependent vasodilators in postischemic acute renal failure in rats.
    Conger J; Robinette J; Villar A; Raij L; Shultz P
    J Clin Invest; 1995 Jul; 96(1):631-8. PubMed ID: 7542287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inner medullary collecting duct function in ischemic acute renal failure.
    Wilson DR; Honrath U
    Clin Invest Med; 1988 Jun; 11(3):157-66. PubMed ID: 3402104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.