These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 11474353)
1. Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Dick JC; Bourgeault CA Spine (Phila Pa 1976); 2001 Aug; 26(15):1668-72. PubMed ID: 11474353 [TBL] [Abstract][Full Text] [Related]
2. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern? Serhan H; Slivka M; Albert T; Kwak SD Spine J; 2004; 4(4):379-87. PubMed ID: 15246296 [TBL] [Abstract][Full Text] [Related]
3. Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants. Pienkowski D; Stephens GC; Doers TM; Hamilton DM Spine (Phila Pa 1976); 1998 Apr; 23(7):782-8. PubMed ID: 9563108 [TBL] [Abstract][Full Text] [Related]
4. The effects of rod contouring on spinal construct fatigue strength. Lindsey C; Deviren V; Xu Z; Yeh RF; Puttlitz CM Spine (Phila Pa 1976); 2006 Jul; 31(15):1680-7. PubMed ID: 16816763 [TBL] [Abstract][Full Text] [Related]
5. Comparison between 4.0-mm stainless steel and 4.75-mm titanium alloy single-rod spinal instrumentation for anterior thoracoscopic scoliosis surgery. Yoon SH; Ugrinow VL; Upasani VV; Pawelek JB; Newton PO Spine (Phila Pa 1976); 2008 Sep; 33(20):2173-8. PubMed ID: 18794758 [TBL] [Abstract][Full Text] [Related]
6. Thermomechanical effects of spine surgery rods composed of different metals and alloys. Noshchenko A; Patel VV; Baldini T; Yun L; Lindley EM; Burger EL Spine (Phila Pa 1976); 2011 May; 36(11):870-8. PubMed ID: 20739915 [TBL] [Abstract][Full Text] [Related]
7. Mechanical Analysis of Notch-Free Pre-Bent Rods for Spinal Deformity Surgery. Yamada K; Sudo H; Iwasaki N; Chiba A Spine (Phila Pa 1976); 2020 Mar; 45(6):E312-E318. PubMed ID: 31574057 [TBL] [Abstract][Full Text] [Related]
8. Would CoCr rods provide better correctional forces than stainless steel or titanium for rigid scoliosis curves? Serhan H; Mhatre D; Newton P; Giorgio P; Sturm P J Spinal Disord Tech; 2013 Apr; 26(2):E70-4. PubMed ID: 22832558 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the Fracture Mechanism of Ti-6Al-4V Alloy Rods That Failed Clinically After Spinal Instrumentation Surgery. Yamanaka K; Mori M; Yamazaki K; Kumagai R; Doita M; Chiba A Spine (Phila Pa 1976); 2015 Jul; 40(13):E767-73. PubMed ID: 25785960 [TBL] [Abstract][Full Text] [Related]
10. The fatigue life of contoured cobalt chrome posterior spinal fusion rods. Nguyen TQ; Buckley JM; Ames C; Deviren V Proc Inst Mech Eng H; 2011 Feb; 225(2):194-8. PubMed ID: 21428153 [TBL] [Abstract][Full Text] [Related]
11. Effectiveness of transfixation and length of instrumentation on titanium and stainless steel transpedicular spine implants. Korovessis P; Baikousis A; Deligianni D; Mysirlis Y; Soucacos P J Spinal Disord; 2001 Apr; 14(2):109-17. PubMed ID: 11285422 [TBL] [Abstract][Full Text] [Related]
12. Titanium versus stainless steel for anterior spinal fusions: an analysis of rod stress as a predictor of rod breakage during physiologic loading in a bovine model. Wedemeyer M; Parent S; Mahar A; Odell T; Swimmer T; Newton P Spine (Phila Pa 1976); 2007 Jan; 32(1):42-8. PubMed ID: 17202891 [TBL] [Abstract][Full Text] [Related]
13. A comparison of stainless steel and CP titanium rods for the anterior instrumentation of scoliosis. Haher T; Ottaviano D; Lapman P; Goldfarb B; Merola A; Valdevit A Biomed Mater Eng; 2004; 14(1):71-7. PubMed ID: 14757955 [TBL] [Abstract][Full Text] [Related]
14. A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation. Kok D; Firkins PJ; Wapstra FH; Veldhuizen AG BMC Musculoskelet Disord; 2013 Sep; 14():269. PubMed ID: 24047109 [TBL] [Abstract][Full Text] [Related]
15. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation. Bruner HJ; Guan Y; Yoganandan N; Pintar FA; Maiman DJ; Slivka MA J Neurosurg Spine; 2010 Dec; 13(6):766-72. PubMed ID: 21121756 [TBL] [Abstract][Full Text] [Related]
16. Impact of Electrocautery on Fatigue Life of Spinal Fusion Constructs-An In Vitro Biomechanical Study. Almansour H; Sonntag R; Pepke W; Bruckner T; Kretzer JP; Akbar M Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31382555 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of systemic metal diffusion after spinal pedicular fixation with titanium alloy and stainless steel system: a 36-month experimental study in sheep. Brayda-Bruno M; Fini M; Pierini G; Giavaresi G; Rocca M; Giardino R Int J Artif Organs; 2001 Jan; 24(1):41-9. PubMed ID: 11266042 [TBL] [Abstract][Full Text] [Related]
18. The Effect of Contouring on Fatigue Strength of Spinal Rods: Is it Okay to Re-bend and Which Materials Are Best? Slivka MA; Fan YK; Eck JC Spine Deform; 2013 Nov; 1(6):395-400. PubMed ID: 27927364 [TBL] [Abstract][Full Text] [Related]
19. [The LSP test for determining oscillation resistance of spinal implants]. Schuh A; Lorenz S; Holzwarth U Biomed Tech (Berl); 2003 Jun; 48(6):162-5. PubMed ID: 12861655 [TBL] [Abstract][Full Text] [Related]
20. Titanium-alloy enhances bone-pedicle screw fixation: mechanical and histomorphometrical results of titanium-alloy versus stainless steel. Christensen FB; Dalstra M; Sejling F; Overgaard S; Bünger C Eur Spine J; 2000 Apr; 9(2):97-103. PubMed ID: 10823424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]