BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 11474353)

  • 1. Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants.
    Dick JC; Bourgeault CA
    Spine (Phila Pa 1976); 2001 Aug; 26(15):1668-72. PubMed ID: 11474353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants.
    Pienkowski D; Stephens GC; Doers TM; Hamilton DM
    Spine (Phila Pa 1976); 1998 Apr; 23(7):782-8. PubMed ID: 9563108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of rod contouring on spinal construct fatigue strength.
    Lindsey C; Deviren V; Xu Z; Yeh RF; Puttlitz CM
    Spine (Phila Pa 1976); 2006 Jul; 31(15):1680-7. PubMed ID: 16816763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between 4.0-mm stainless steel and 4.75-mm titanium alloy single-rod spinal instrumentation for anterior thoracoscopic scoliosis surgery.
    Yoon SH; Ugrinow VL; Upasani VV; Pawelek JB; Newton PO
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2173-8. PubMed ID: 18794758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermomechanical effects of spine surgery rods composed of different metals and alloys.
    Noshchenko A; Patel VV; Baldini T; Yun L; Lindley EM; Burger EL
    Spine (Phila Pa 1976); 2011 May; 36(11):870-8. PubMed ID: 20739915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical Analysis of Notch-Free Pre-Bent Rods for Spinal Deformity Surgery.
    Yamada K; Sudo H; Iwasaki N; Chiba A
    Spine (Phila Pa 1976); 2020 Mar; 45(6):E312-E318. PubMed ID: 31574057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Would CoCr rods provide better correctional forces than stainless steel or titanium for rigid scoliosis curves?
    Serhan H; Mhatre D; Newton P; Giorgio P; Sturm P
    J Spinal Disord Tech; 2013 Apr; 26(2):E70-4. PubMed ID: 22832558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the Fracture Mechanism of Ti-6Al-4V Alloy Rods That Failed Clinically After Spinal Instrumentation Surgery.
    Yamanaka K; Mori M; Yamazaki K; Kumagai R; Doita M; Chiba A
    Spine (Phila Pa 1976); 2015 Jul; 40(13):E767-73. PubMed ID: 25785960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fatigue life of contoured cobalt chrome posterior spinal fusion rods.
    Nguyen TQ; Buckley JM; Ames C; Deviren V
    Proc Inst Mech Eng H; 2011 Feb; 225(2):194-8. PubMed ID: 21428153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of transfixation and length of instrumentation on titanium and stainless steel transpedicular spine implants.
    Korovessis P; Baikousis A; Deligianni D; Mysirlis Y; Soucacos P
    J Spinal Disord; 2001 Apr; 14(2):109-17. PubMed ID: 11285422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Electrocautery on Fatigue Life of Spinal Fusion Constructs-An In Vitro Biomechanical Study.
    Almansour H; Sonntag R; Pepke W; Bruckner T; Kretzer JP; Akbar M
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31382555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titanium versus stainless steel for anterior spinal fusions: an analysis of rod stress as a predictor of rod breakage during physiologic loading in a bovine model.
    Wedemeyer M; Parent S; Mahar A; Odell T; Swimmer T; Newton P
    Spine (Phila Pa 1976); 2007 Jan; 32(1):42-8. PubMed ID: 17202891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of stainless steel and CP titanium rods for the anterior instrumentation of scoliosis.
    Haher T; Ottaviano D; Lapman P; Goldfarb B; Merola A; Valdevit A
    Biomed Mater Eng; 2004; 14(1):71-7. PubMed ID: 14757955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation.
    Kok D; Firkins PJ; Wapstra FH; Veldhuizen AG
    BMC Musculoskelet Disord; 2013 Sep; 14():269. PubMed ID: 24047109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation.
    Bruner HJ; Guan Y; Yoganandan N; Pintar FA; Maiman DJ; Slivka MA
    J Neurosurg Spine; 2010 Dec; 13(6):766-72. PubMed ID: 21121756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of systemic metal diffusion after spinal pedicular fixation with titanium alloy and stainless steel system: a 36-month experimental study in sheep.
    Brayda-Bruno M; Fini M; Pierini G; Giavaresi G; Rocca M; Giardino R
    Int J Artif Organs; 2001 Jan; 24(1):41-9. PubMed ID: 11266042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Contouring on Fatigue Strength of Spinal Rods: Is it Okay to Re-bend and Which Materials Are Best?
    Slivka MA; Fan YK; Eck JC
    Spine Deform; 2013 Nov; 1(6):395-400. PubMed ID: 27927364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The LSP test for determining oscillation resistance of spinal implants].
    Schuh A; Lorenz S; Holzwarth U
    Biomed Tech (Berl); 2003 Jun; 48(6):162-5. PubMed ID: 12861655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titanium-alloy enhances bone-pedicle screw fixation: mechanical and histomorphometrical results of titanium-alloy versus stainless steel.
    Christensen FB; Dalstra M; Sejling F; Overgaard S; Bünger C
    Eur Spine J; 2000 Apr; 9(2):97-103. PubMed ID: 10823424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.