These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 11474924)
1. A spatially varying compton scatter correction for SPECT utilizing the integral Klein-Nishina cross section. Jonsson C; Larsson SA Phys Med Biol; 2001 Jul; 46(7):1767-83. PubMed ID: 11474924 [TBL] [Abstract][Full Text] [Related]
2. A modified TEW approach to scatter correction for In-111 and Tc-99m dual-isotope small-animal SPECT. Prior P; Timmins R; Petryk J; Strydhorst J; Duan Y; Wei L; Glenn Wells R Med Phys; 2016 Oct; 43(10):5503. PubMed ID: 27782731 [TBL] [Abstract][Full Text] [Related]
3. A three-dimensional ray-driven attenuation, scatter and geometric response correction technique for SPECT in inhomogeneous media. Laurette I; Zeng GL; Welch A; Christian PE; Gullberg GT Phys Med Biol; 2000 Nov; 45(11):3459-80. PubMed ID: 11098917 [TBL] [Abstract][Full Text] [Related]
4. A slice-by-slice blurring model and kernel evaluation using the Klein-Nishina formula for 3D scatter compensation in parallel and converging beam SPECT. Bai C; Zeng GL; Gullberg GT Phys Med Biol; 2000 May; 45(5):1275-307. PubMed ID: 10843105 [TBL] [Abstract][Full Text] [Related]
5. Photon energy recovery: a method to improve the effective energy resolution of gamma cameras. Hannequin PP; Mas JF J Nucl Med; 1998 Mar; 39(3):555-62. PubMed ID: 9529311 [TBL] [Abstract][Full Text] [Related]
6. Dual-window scatter correction and energy window setting in cerebral blood flow SPECT: a Monte Carlo study. Gustafsson A; Arlig A; Jacobsson L; Ljungberg M; Wikkelsö C Phys Med Biol; 2000 Nov; 45(11):3431-40. PubMed ID: 11098915 [TBL] [Abstract][Full Text] [Related]
7. Generalized dual-energy-window scatter compensation in spatially varying media for SPECT. Smith MF; Jaszczak RJ Phys Med Biol; 1994 Mar; 39(3):531-46. PubMed ID: 15551596 [TBL] [Abstract][Full Text] [Related]
8. [Evaluation of a scatter correction technique for single photon transmission measurements in PET by means of Monte Carlo simulations]. Wegmann K; Brix G Nuklearmedizin; 2000; 39(3):67-71. PubMed ID: 10834193 [TBL] [Abstract][Full Text] [Related]
9. Fast Monte Carlo based joint iterative reconstruction for simultaneous 99mTc/ 123I SPECT imaging. Ouyang J; El Fakhri G; Moore SC Med Phys; 2007 Aug; 34(8):3263-72. PubMed ID: 17879789 [TBL] [Abstract][Full Text] [Related]
10. Analytically based photon scatter modeling for a multipinhole cardiac SPECT camera. Pourmoghaddas A; Wells RG Med Phys; 2016 Nov; 43(11):6098. PubMed ID: 27806581 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of 3D Monte Carlo-based scatter correction for 99mTc cardiac perfusion SPECT. Xiao J; de Wit TC; Staelens SG; Beekman FJ J Nucl Med; 2006 Oct; 47(10):1662-9. PubMed ID: 17015903 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo-based down-scatter correction of SPECT attenuation maps. Bokulić T; Vastenhouw B; de Jong HW; van Dongen AJ; van Rijk PP; Beekman FJ Eur J Nucl Med Mol Imaging; 2004 Aug; 31(8):1173-81. PubMed ID: 15034678 [TBL] [Abstract][Full Text] [Related]
13. [Estimation of scatter component in SPECT planar image using a Monte Carlo method]. Ogawa K; Harata Y; Ichihara T; Kubo A; Hashimoto S Kaku Igaku; 1990 May; 27(5):467-76. PubMed ID: 2395230 [TBL] [Abstract][Full Text] [Related]
14. Scatter and attenuation correction for 111In based on energy spectrum fitting. Kaplan MS; Miyaoka RS; Kohlmyer SK; Haynor DR; Harrison RL; Lewellen TK Med Phys; 1996 Jul; 23(7):1277-85. PubMed ID: 8839424 [TBL] [Abstract][Full Text] [Related]
15. Scatter and crosstalk corrections for (99m)Tc/(123)I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators. Fan P; Hutton BF; Holstensson M; Ljungberg M; Pretorius PH; Prasad R; Ma T; Liu Y; Wang S; Thorn SL; Stacy MR; Sinusas AJ; Liu C Med Phys; 2015 Dec; 42(12):6895-911. PubMed ID: 26632046 [TBL] [Abstract][Full Text] [Related]
16. Dependency of energy and spatial distributions of photons on edge of object in brain SPECT. Deloar HM; Watabe H; Kudomi N; Kim KM; Aoi T; Iida H Ann Nucl Med; 2003 Apr; 17(2):99-106. PubMed ID: 12790357 [TBL] [Abstract][Full Text] [Related]
17. [Compton-scatter correction using the triple energy window (TEW) method in conventional single photon emission computed tomography without TEW acquisition hardware]. Fujioka H; Inoue T; Ishimaru Y; Akamune A; Murase K; Tanada S; Ikezoe J Kaku Igaku; 1997 Apr; 34(4):251-8. PubMed ID: 9183149 [TBL] [Abstract][Full Text] [Related]
18. Hybrid scatter correction applied to quantitative holmium-166 SPECT. de Wit TC; Xiao J; Nijsen JF; van het Schip FD; Staelens SG; van Rijk PP; Beekman FJ Phys Med Biol; 2006 Oct; 51(19):4773-87. PubMed ID: 16985270 [TBL] [Abstract][Full Text] [Related]
19. Attenuation correction in quantitative SPECT of cerebral blood flow: a Monte Carlo study. Arlig A; Gustafsson A; Jacobsson L; Ljungberg M; Wikkelsö C Phys Med Biol; 2000 Dec; 45(12):3847-59. PubMed ID: 11131204 [TBL] [Abstract][Full Text] [Related]
20. Limitations of dual-photopeak window scatter correction for brain imaging. Zimmerman RE; Williams BB; Chan KH; Moore SC; Kijewski MF J Nucl Med; 1997 Dec; 38(12):1902-6. PubMed ID: 9430466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]