These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11474933)

  • 21. A theoretical evaluation of the performance of the Dartmouth IMAAH system to heat cylindrical and ellipsoidal tumour models.
    Mechling JA; Strohbehn JW; France LJ
    Int J Hyperthermia; 1991; 7(3):465-83. PubMed ID: 1919142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation.
    Rossetto F; Diederich CJ; Stauffer PR
    Med Phys; 2000 Apr; 27(4):745-53. PubMed ID: 10798697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calculations of heating patterns of an array of microwave interstitial antennas.
    Cherry PC; Iskander MF
    IEEE Trans Biomed Eng; 1993 Aug; 40(8):771-9. PubMed ID: 8258443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling of interstitial microwave hyperthermia for hepatic tumors using floating sleeve antenna.
    Eltigani F; Ahmed S; Yahya M; Ahmed M
    Phys Eng Sci Med; 2022 Jun; 45(2):569-575. PubMed ID: 35426612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A 915-MHz antenna for microwave thermal ablation treatment: physical design, computer modeling and experimental measurement.
    Pisa S; Cavagnaro M; Bernardi P; Lin JC
    IEEE Trans Biomed Eng; 2001 May; 48(5):599-601. PubMed ID: 11341534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy.
    Ross AB; Diederich CJ; Nau WH; Rieke V; Butts RK; Sommer G; Gill H; Bouley DM
    Med Phys; 2005 Jun; 32(6):1555-65. PubMed ID: 16013714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators.
    Chopra R; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2005 Nov; 50(21):4957-75. PubMed ID: 16237234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays.
    Furse CM; Iskander MF
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):977-86. PubMed ID: 2793198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Characterization of helical coil microwave antenna for interstitial hyperthermia].
    Satoh T; Stauffer PR; Fike JR
    Gan No Rinsho; 1988 Sep; 34(11):1544-9. PubMed ID: 3184458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of simulated and experimental results from helical antennas within a muscle-equivalent phantom.
    Reeves JW; Birch MJ; Hand JW
    Phys Med Biol; 2008 Jun; 53(11):3057-70. PubMed ID: 18490813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical limits of SAR distributions of a four-element square array of dipole-type antennas.
    Fan CJ; Leybovich LB; Devanna WG; Kurup RG
    Med Phys; 1994 Nov; 21(11):1665-70. PubMed ID: 7891625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model.
    He X; McGee S; Coad JE; Schmidlin F; Iaizzo PA; Swanlund DJ; Kluge S; Rudie E; Bischof JC
    Int J Hyperthermia; 2004 Sep; 20(6):567-93. PubMed ID: 15370815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J; Klautke G; Seegenschmiedt HM; Engelbrecht R; Schaller G; Sauer R
    Strahlenther Onkol; 1994 Nov; 170(11):654-64. PubMed ID: 7974181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased prostatic blood flow in response to microwave thermal treatment: preliminary findings in two patients with benign prostatic hyperplasia.
    Larson TR; Collins JM
    Urology; 1995 Oct; 46(4):584-90. PubMed ID: 7571237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations.
    Deshazer G; Prakash P; Merck D; Haemmerich D
    Int J Hyperthermia; 2017 Feb; 33(1):74-82. PubMed ID: 27431040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice].
    Marini P; Guiot C; Baiotto B; Gabriele P
    Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance characteristics of a helical microwave interstitial antenna for local hyperthermia.
    Wu A; Watson ML; Sternick ES; Bielawa RJ; Carr KL
    Med Phys; 1987; 14(2):235-7. PubMed ID: 3587145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.