These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 11474961)

  • 1. Regulation of oxygen consumption at the onset of exercise.
    Hughson RL; Tschakovsky ME; Houston ME
    Exerc Sport Sci Rev; 2001 Jul; 29(3):129-33. PubMed ID: 11474961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of oxygen consumption at exercise onset: is it really controversial?
    Grassi B
    Exerc Sport Sci Rev; 2001 Jul; 29(3):134-8. PubMed ID: 11474962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen uptake kinetics: old and recent lessons from experiments on isolated muscle in situ.
    Grassi B
    Eur J Appl Physiol; 2003 Oct; 90(3-4):242-9. PubMed ID: 14556076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans.
    Harmer AR; McKenna MJ; Sutton JR; Snow RJ; Ruell PA; Booth J; Thompson MW; Mackay NA; Stathis CG; Crameri RM; Carey MF; Eager DM
    J Appl Physiol (1985); 2000 Nov; 89(5):1793-803. PubMed ID: 11053328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy system interaction and relative contribution during maximal exercise.
    Gastin PB
    Sports Med; 2001; 31(10):725-41. PubMed ID: 11547894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What governs skeletal muscle VO2max? New evidence.
    Richardson RS
    Med Sci Sports Exerc; 2000 Jan; 32(1):100-7. PubMed ID: 10647536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiovascular dynamics at the onset of exercise.
    Hughson RL; Tschakovsky ME
    Med Sci Sports Exerc; 1999 Jul; 31(7):1005-10. PubMed ID: 10416562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle.
    Korzeniewski B; Liguzinski P
    Biophys Chem; 2004 Jul; 110(1-2):147-69. PubMed ID: 15223151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of O2 supply-dependent VO2 max in the exercise-trained human quadriceps.
    Richardson RS; Grassi B; Gavin TP; Haseler LJ; Tagore K; Roca J; Wagner PD
    J Appl Physiol (1985); 1999 Mar; 86(3):1048-53. PubMed ID: 10066722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle.
    Korzeniewski B; Zoladz JA
    J Appl Physiol (1985); 2015 May; 118(10):1240-9. PubMed ID: 25767031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy metabolism in muscle approaching maximal rates of oxygen utilization.
    Wilson DF
    Med Sci Sports Exerc; 1995 Jan; 27(1):54-9. PubMed ID: 7898338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis.
    Krustrup P; Ferguson RA; Kjaer M; Bangsbo J
    J Physiol; 2003 May; 549(Pt 1):255-69. PubMed ID: 12651917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans.
    Korzeniewski B; Rossiter HB
    J Physiol; 2015 Dec; 593(24):5255-68. PubMed ID: 26503399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycolysis is independent of oxygenation state in stimulated human skeletal muscle in vivo.
    Conley KE; Kushmerick MJ; Jubrias SA
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):935-45. PubMed ID: 9714871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of intramuscular oxidative metabolism to total ATP production during forearm isometric exercise at varying intensities.
    Kimura N; Hamaoka T; Kurosawa Y; Katsumura T
    Tohoku J Exp Med; 2006 Apr; 208(4):307-20. PubMed ID: 16565593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of O2 in regulation of lactate dynamics during hypoxia: mathematical model and analysis.
    Cabrera ME; Saidel GM; Kalhan SC
    Ann Biomed Eng; 1998; 26(1):1-27. PubMed ID: 10355547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-energy phosphate metabolism in the exercising muscle of patients with peripheral arterial disease.
    Schocke M; Esterhammer R; Greiner A
    Vasa; 2008 Aug; 37(3):199-210. PubMed ID: 18690587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed metabolic activation of oxidative phosphorylation in skeletal muscle at exercise onset.
    Grassi B
    Med Sci Sports Exerc; 2005 Sep; 37(9):1567-73. PubMed ID: 16177610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does energy demand have an additional control in ischemia or are current models of metabolic control adequate at extremes?
    Connett RJ; Gayeski TE; Honig CR
    Adv Exp Med Biol; 1994; 361():509-20. PubMed ID: 7597977
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.