These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11475159)

  • 1. Removal of volatile and semivolatile organic contamination from soil by air and steam flushing.
    Sleep BE; McClure PD
    J Contam Hydrol; 2001 Jul; 50(1-2):21-40. PubMed ID: 11475159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of polychlorinated biphenyl removal from contaminated soil using microwave-generated steam.
    Di P; Chang DP
    J Air Waste Manag Assoc; 2001 Apr; 51(4):482-8. PubMed ID: 11321905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Air sparging effectiveness: laboratory characterization of air-channel mass transfer zone for VOC volatilization.
    Braida WJ; Ong SK
    J Hazard Mater; 2001 Oct; 87(1-3):241-58. PubMed ID: 11566413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-injection of air and steam for the prevention of the downward migration of DNAPLs during steam enhanced extraction: an experimental evaluation of optimum injection ratio predictions.
    Kaslusky SF; Udell KS
    J Contam Hydrol; 2005 May; 77(4):325-47. PubMed ID: 15854722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of NAPLs from the unsaturated zone using steam: prevention of downward migration by injecting mixtures of steam and air.
    Schmidt R; Gudbjerg J; Sonnenborg TO; Jensen KH
    J Contam Hydrol; 2002 Apr; 55(3-4):233-60. PubMed ID: 11999631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of extraction procedures for removing lead from contaminated soil.
    Tawinteung N; Parkpian P; DeLaune RD; Jugsujinda A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(2):385-407. PubMed ID: 15717783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of in situ steam formation by radio frequency heating on thermodesorption of hydrocarbons from contaminated soil.
    Roland U; Bergmann S; Holzer F; Kopinke FD
    Environ Sci Technol; 2010 Dec; 44(24):9502-8. PubMed ID: 21105642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental demonstration of contaminant removal from fractured rock by boiling.
    Chen F; Liu X; Falta RW; Murdoch LC
    Environ Sci Technol; 2010 Aug; 44(16):6437-42. PubMed ID: 20666474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A laboratory and pilot study of thermally enhanced soil vapor extraction method for the removal of semi-volatile organic contaminants.
    Park G; Shin HS; Ko SO
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(4):881-97. PubMed ID: 15792306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.
    Reddy KR; Adams JA
    J Hazard Mater; 2000 Feb; 72(2-3):147-65. PubMed ID: 10650188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of polychlorinated biphenyl removal from contaminated soil using steam.
    Di P; Chang DP; Dwyer HA
    Environ Sci Technol; 2002 Apr; 36(8):1845-50. PubMed ID: 11993886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting hydrocarbon removal from thermally enhanced soil vapor extraction systems. 2. Field study.
    Poppendieck DG; Loehr RC; Webster MT
    J Hazard Mater; 1999 Oct; 69(1):95-109. PubMed ID: 10502609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil.
    Guan Z; Tang XY; Nishimura T; Katou H; Liu HY; Qing J
    J Environ Sci (China); 2018 Feb; 64():197-206. PubMed ID: 29478640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biosurfactant-enhanced soil flushing for the removal of phenanthrene and diesel in sand.
    Shin KH; Kim KW
    Environ Geochem Health; 2004 Mar; 26(1):5-11. PubMed ID: 15214609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical model of air and steam co-injection to prevent the downward migration of DNAPLs during steam-enhanced extraction.
    Kaslusky SF; Udell KS
    J Contam Hydrol; 2002 Apr; 55(3-4):213-32. PubMed ID: 11999630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air sparging remediation of VOCs contaminated low-permeability soil based on pressure gradient control.
    Xu L; Zhu H; Zha F; Kang H; Fang L; Liu J; Tan X; Chu C
    Chemosphere; 2023 Oct; 339():139650. PubMed ID: 37495056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field application of modified in situ soil flushing in combination with air sparging at a military site polluted by diesel and gasoline in Korea.
    Lee H; Lee Y; Kim J; Kim C
    Int J Environ Res Public Health; 2014 Aug; 11(9):8806-24. PubMed ID: 25166919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation characteristics of surfactant-enhanced air sparging (SEAS) technology on volatile organic compounds contaminated soil with low permeability.
    Xu L; Yan L; Zha F; Zhu F; Tan X; Kang B; Yang C; Lin Z
    J Contam Hydrol; 2022 Oct; 250():104049. PubMed ID: 35863213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-ionic surfactant flushing of pentachlorophenol from NAPL-contaminated soil.
    Park SK; Bielefeldt AR
    Water Res; 2005 Apr; 39(7):1388-96. PubMed ID: 15862339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field and numerical analysis of in-situ air sparging: a case study.
    Benner ML; Stanford SM; Lee LS; Mohtar RH
    J Hazard Mater; 2000 Feb; 72(2-3):217-36. PubMed ID: 10650191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.