These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The promise of optical sensing strategies for glucose. Klonoff DC Diabetes Technol Ther; 1999; 1(4):401-2. PubMed ID: 11474823 [No Abstract] [Full Text] [Related]
4. Glucose determination in human aqueous humor with Raman spectroscopy. Lambert JL; Pelletier CC; Borchert M J Biomed Opt; 2005; 10(3):031110. PubMed ID: 16229635 [TBL] [Abstract][Full Text] [Related]
5. Introduction to concepts in laser technology for glucose monitoring. Berger AJ Diabetes Technol Ther; 1999; 1(2):121-8. PubMed ID: 11475283 [TBL] [Abstract][Full Text] [Related]
6. Noninvasive laser measurement of blood glucose in the eye: a bright idea or an optical illusion? Arnold MA; Klonoff DA Diabetes Technol Ther; 1999; 1(2):117-9. PubMed ID: 11475282 [No Abstract] [Full Text] [Related]
7. Laser-implant contact lens could be glucose monitor. Gunby P JAMA; 1980 Jan; 243(4):317. PubMed ID: 7351735 [No Abstract] [Full Text] [Related]
8. The use of polarized laser light through the eye for noninvasive glucose monitoring. Cameron BD; Gorde HW; Satheesan B; Coté GL Diabetes Technol Ther; 1999; 1(2):135-43. PubMed ID: 11475285 [TBL] [Abstract][Full Text] [Related]
9. Optical monitor of glucose. March W; Engerman R; Rabinovitch B Trans Am Soc Artif Intern Organs; 1979; 25():28-31. PubMed ID: 524594 [TBL] [Abstract][Full Text] [Related]
11. Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry. Winkler AM; Bonnema GT; Barton JK Appl Opt; 2011 Jun; 50(17):2719-31. PubMed ID: 21673777 [TBL] [Abstract][Full Text] [Related]
12. Non-invasive detection of antibiotics and physiological substances in the aqueous humor by Raman spectroscopy. Sideroudi TI; Pharmakakis NM; Papatheodorou GN; Voyiatzis GA Lasers Surg Med; 2006 Aug; 38(7):695-703. PubMed ID: 16736502 [TBL] [Abstract][Full Text] [Related]
13. New optical scheme for a polarimetric-based glucose sensor. Ansari RR; Böckle S; Rovati L J Biomed Opt; 2004; 9(1):103-15. PubMed ID: 14715061 [TBL] [Abstract][Full Text] [Related]
14. Determination of glucose in human aqueous humor using Raman spectroscopy and designed-solution calibration. Pelletier CC; Lambert JL; Borchert M Appl Spectrosc; 2005 Aug; 59(8):1024-31. PubMed ID: 16105211 [TBL] [Abstract][Full Text] [Related]
15. Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor. Cameron BD; Baba JS; Coté GL Diabetes Technol Ther; 2001; 3(2):201-7. PubMed ID: 11478325 [TBL] [Abstract][Full Text] [Related]
16. Development of a real-time corneal birefringence compensated glucose sensing polarimeter. Cameron BD; Anumula H Diabetes Technol Ther; 2006 Apr; 8(2):156-64. PubMed ID: 16734546 [TBL] [Abstract][Full Text] [Related]
17. Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye. Rawer R; Stork W; Kreiner CF Graefes Arch Clin Exp Ophthalmol; 2004 Dec; 242(12):1017-23. PubMed ID: 15592870 [TBL] [Abstract][Full Text] [Related]
19. Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye. Baba JS; Cameron BD; Theru S; Coté GL J Biomed Opt; 2002 Jul; 7(3):321-8. PubMed ID: 12175281 [TBL] [Abstract][Full Text] [Related]
20. [The research status and development of noninvasive glucose optical measurements]. Li G; Zhou M; Wu HJ; Lin L Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Oct; 30(10):2744-7. PubMed ID: 21137412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]