These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 1147588)
1. Stimulation of derepressed enzyme synthesis in bacteria by growth on sublethal concentrations of chloramphenicol. Ford SR; Switzer RL Antimicrob Agents Chemother; 1975 May; 7(5):555-63. PubMed ID: 1147588 [TBL] [Abstract][Full Text] [Related]
2. Stimulation of enzyme synthesis by sublethal concentrations of chloramphenicol is not mediated by ribonucleotide pools. Ford SR; Switzer RL Antimicrob Agents Chemother; 1975 May; 7(5):564-70. PubMed ID: 1096806 [TBL] [Abstract][Full Text] [Related]
3. Roles of arginine and canavanine in the synthesis and repression of ornithine transcarbamylase by Escherichia coli. Faanes R; Rogers P J Bacteriol; 1968 Aug; 96(2):409-20. PubMed ID: 4877125 [TBL] [Abstract][Full Text] [Related]
4. Regulation of Escherichia coli aspartate transcarbamylase synthesis by guanosine tetraphosphate and pyrimidine ribonucleoside triphosphates. Turnbough CL J Bacteriol; 1983 Feb; 153(2):998-1007. PubMed ID: 6337130 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of aspartic transcarbamylase in sporulating Bacillus subtilis: demonstration of a requirement for metabolic energy. Waindle LM; Switzer RL J Bacteriol; 1973 May; 114(2):517-27. PubMed ID: 4196242 [TBL] [Abstract][Full Text] [Related]
6. CONTROL OF URACIL SYNTHESIS BY ARGININE IN ESCHERICHIA COLI. BEN-ISHAI R; LAHAV M; ZAMIR A J Bacteriol; 1964 Jun; 87(6):1436-42. PubMed ID: 14188725 [TBL] [Abstract][Full Text] [Related]
7. Differentiation of Rhizobium japonicum, III. Inhibition of nitrogenase derepression by chloramphenicol and rifampicin concentrations, not inhibiting growth. Werner D Z Naturforsch C Biosci; 1978; 33(11-12):859-62. PubMed ID: 154223 [TBL] [Abstract][Full Text] [Related]
8. Repression and derepression of the enzymes of the pyrimidine biosynthetic pathway in Salmonella typhimurium. Smith JM; Kelln RA; O'Donovan GA J Gen Microbiol; 1980 Nov; 121(1):27-38. PubMed ID: 6114130 [TBL] [Abstract][Full Text] [Related]
9. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in chloramphenicol-inhibited cultures of Escherichia coli. Midgley JE; Gray WJ Biochem J; 1971 Apr; 122(2):149-59. PubMed ID: 4940606 [TBL] [Abstract][Full Text] [Related]
10. ENZYMES OF THE PYRIMIDINE PATHWAY IN ESCHERICHIA COLI. I. SYNTHESIS BY CELLS AND SPHEROPLASTS. TAYLOR WH; NOVELLI GD J Bacteriol; 1964 Jul; 88(1):99-104. PubMed ID: 14197912 [TBL] [Abstract][Full Text] [Related]
11. Role of aminoacyl-transfer ribonucleic acid in the regulation of ribonucleic acid synthesis in Escherichia coli. Morris DW; DeMoss JA J Bacteriol; 1965 Dec; 90(6):1624-31. PubMed ID: 5322722 [TBL] [Abstract][Full Text] [Related]
12. Regulation and mechanism of phosphoribosylpyrophosphate synthetase: repression by end products. White MN; Olszowy J; Switzer RL J Bacteriol; 1971 Oct; 108(1):122-31. PubMed ID: 4330734 [TBL] [Abstract][Full Text] [Related]
13. Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12. Reeve CA; Amy PS; Matin A J Bacteriol; 1984 Dec; 160(3):1041-6. PubMed ID: 6389505 [TBL] [Abstract][Full Text] [Related]
14. Chloramphenicol-induced changes in the synthesis of ribosomal, transfer, and messenger ribonucleic acids in Escherichia coli B/r. Shen V; Bremer H J Bacteriol; 1977 Jun; 130(3):1098-108. PubMed ID: 324974 [TBL] [Abstract][Full Text] [Related]
15. Unique aspects of the regulation of the aspartate transcarbamylase of Serratia marcescens. Wild JR; Belser WL; O'Donovan GA J Bacteriol; 1976 Dec; 128(3):766-75. PubMed ID: 11207 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of repressor formation in the lactose system of Escherichia coli by inhibitors of protein synthesis. Horiuchi T; Ohshima Y J Mol Biol; 1966 Oct; 20(3):517-26. PubMed ID: 5338987 [No Abstract] [Full Text] [Related]