These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1147606)

  • 1. Interaction of lead and bacterial lipids.
    Tornabene TG; Peterson SL
    Appl Microbiol; 1975 May; 29(5):680-4. PubMed ID: 1147606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lead on the lipid composition of Micrococcus luteus cells.
    Peterson SL; Bennett LG; Tornabene TG
    Appl Microbiol; 1975 May; 29(5):669-79. PubMed ID: 167661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of growth temperature on the lipid composition of Thermus aquaticus.
    Ray PH; White DC; Brock TD
    J Bacteriol; 1971 Oct; 108(1):227-35. PubMed ID: 5122805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of organic solvents on in vitro human skin water barrier function.
    Abrams K; Harvell JD; Shriner D; Wertz P; Maibach H; Maibach HI; Rehfeld SJ
    J Invest Dermatol; 1993 Oct; 101(4):609-13. PubMed ID: 8409532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyphosphoinositides as receptor substances for certain groups of arboviruses.
    Frisch-Niggemeyer W
    Acta Virol; 1971 Mar; 15(2):119-25. PubMed ID: 4396410
    [No Abstract]   [Full Text] [Related]  

  • 6. Lipid metabolism by phagocytes.
    Elsbach P
    Semin Hematol; 1972 Jul; 9(3):227-39. PubMed ID: 4339309
    [No Abstract]   [Full Text] [Related]  

  • 7. [Study of molecular organization of biological membranes using lipid transfer proteins. Asymmetry of phospholipids in the cytoplasmic membrane of Micrococcus lysodeikticus].
    Barsuov LI; Kulikov VI; Bergel'son LD
    Biokhimiia; 1977 Sep; 42(9):1539-55. PubMed ID: 911945
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparison of solvent mixtures for pressurized solvent extraction of soil fatty acid biomarkers.
    Jeannotte R; Hamel C; Jabaji S; Whalen JK
    Talanta; 2008 Oct; 77(1):195-9. PubMed ID: 18804620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced solvent extraction of polar lipids associated with rubber particles from Hevea brasiliensis.
    Bonfils F; Ehabe EE; Aymard C; Vaysse L; Sainte-Beuve J
    Phytochem Anal; 2007; 18(2):103-8. PubMed ID: 17439009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple modification of a silicic acid lipid fractionation protocol to eliminate free fatty acids from glycolipid and phospholipid fractions.
    Dickson L; Bull ID; Gates PJ; Evershed RP
    J Microbiol Methods; 2009 Sep; 78(3):249-54. PubMed ID: 19481119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of chloroform, phenols, alcohols and cyanogen iodide on the swelling of Pseudomonas aeruginosa in various salts.
    Bernheim F
    Microbios; 1972; 5(18):143-9. PubMed ID: 4361837
    [No Abstract]   [Full Text] [Related]  

  • 12. Properties of plasma and mesosomal membranes isolated from Micrococcus lysodeikticus: rates of synthesis and characterisation of lipids.
    Thomas TD; Ellar DJ
    Biochim Biophys Acta; 1973 Aug; 316(2):180-95. PubMed ID: 4741909
    [No Abstract]   [Full Text] [Related]  

  • 13. Lipid transfer proteins as a tool in the study of membrane structure. Inside-outside distribution of the phospholipids in the protoplasmic membrane of Micrococcus lysodeikticus.
    Barsukov LI; Kulikov VI; Bergelson LD
    Biochem Biophys Res Commun; 1976 Aug; 71(3):704-11. PubMed ID: 962949
    [No Abstract]   [Full Text] [Related]  

  • 14. Microbial assimilation of hydrocarbons: identification of phospholipids.
    Makula RA; Finnerty WR
    J Bacteriol; 1970 Aug; 103(2):348-55. PubMed ID: 5432005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skin barrier modification with organic solvents.
    Barba C; Alonso C; Martí M; Manich A; Coderch L
    Biochim Biophys Acta; 2016 Aug; 1858(8):1935-43. PubMed ID: 27184268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial cell membranes. II. Possible structure of the basal membrane continuum of Micrococcus lysodeikticus.
    Grula EA; Butler TF; King RD; Smith GL
    Can J Microbiol; 1967 Nov; 13(11):1499-507. PubMed ID: 4965005
    [No Abstract]   [Full Text] [Related]  

  • 17. Microbial assimilation of hydrocarbons: cellular distribution of fatty acids.
    Makula RA; Finnerty WR
    J Bacteriol; 1972 Oct; 112(1):398-407. PubMed ID: 5079069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of phospholipid composition of membranes with the aid of lipid exchange proteins. Incorporation of phosphatidylcholine into protoplasts of Micrococcus lysodeikticus.
    Barsukov LI; Kulikov VI; Simakova IM; Tikhonova GV; Ostrovskii DN; Bergelson LD
    Eur J Biochem; 1978 Oct; 90(2):331-6. PubMed ID: 710432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Structural conversions in the membranes of Micrococcus lysodeikticus].
    Gol'dfel'd MG; Ostrovskiĭ DN; Rozantsev EG
    Dokl Akad Nauk SSSR; 1970; 191(3):702-4. PubMed ID: 4325346
    [No Abstract]   [Full Text] [Related]  

  • 20. Quantity and fatty acid composition of lipid extracted from cells of Streptococcus lactis.
    MACLEOD P; JENSEN RG; GANDER GW; SAMPUGNA J
    J Bacteriol; 1962 Apr; 83(4):806-10. PubMed ID: 14468026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.