These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11476241)

  • 1. Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays.
    Dodge A; Fluri K; Verpoorte E; de Rooij NF
    Anal Chem; 2001 Jul; 73(14):3400-9. PubMed ID: 11476241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of surface biopassivated disposable poly(dimethylsiloxane)/glass chips to a heterogeneous competitive human serum immunoglobulin G immunoassay with incorporated internal standard.
    Linder V; Verpoorte E; de Rooij NF; Sigrist H; Thormann W
    Electrophoresis; 2002 Mar; 23(5):740-9. PubMed ID: 11891707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed high-throughput electrokinetically-controlled immunoassay for the detection of specific bacterial antibodies in human serum.
    Gao Y; Sherman PM; Sun Y; Li D
    Anal Chim Acta; 2008 Jan; 606(1):98-107. PubMed ID: 18068776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A digital microfluidic approach to heterogeneous immunoassays.
    Miller EM; Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2011 Jan; 399(1):337-45. PubMed ID: 21057776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructured layers of spherical biofunctional core-shell nanoparticles provide enlarged reactive surfaces for protein microarrays.
    Borchers K; Weber A; Brunner H; Tovar GE
    Anal Bioanal Chem; 2005 Nov; 383(5):738-46. PubMed ID: 16096752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power-free sequential injection for microchip immunoassay toward point-of-care testing.
    Hosokawa K; Omata M; Sato K; Maeda M
    Lab Chip; 2006 Feb; 6(2):236-41. PubMed ID: 16450033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces. application to immunoassays on planar optical waveguides.
    Hofmann O; Voirin G; Niedermann P; Manz A
    Anal Chem; 2002 Oct; 74(20):5243-50. PubMed ID: 12403577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated self-calibration via electrokinetic solvent proportioning for microfluidic immunoassays.
    Qiu CX; Harrison DJ
    Electrophoresis; 2001 Oct; 22(18):3949-58. PubMed ID: 11700725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-sensitivity miniaturized immunoassays for tumor necrosis factor alpha using microfluidic systems.
    Cesaro-Tadic S; Dernick G; Juncker D; Buurman G; Kropshofer H; Michel B; Fattinger C; Delamarche E
    Lab Chip; 2004 Dec; 4(6):563-9. PubMed ID: 15570366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated microfluidic bioprocessor for solid phase capture immunoassays.
    Kim J; Jensen EC; Megens M; Boser B; Mathies RA
    Lab Chip; 2011 Sep; 11(18):3106-12. PubMed ID: 21804972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic immunoassay with plug-in liquid crystal for optical detection of antibody.
    Zhu Q; Yang KL
    Anal Chim Acta; 2015 Jan; 853():696-701. PubMed ID: 25467520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superporous agarose beads as a solid support for microfluidic immunoassay.
    Yang Y; Nam SW; Lee NY; Kim YS; Park S
    Ultramicroscopy; 2008 Sep; 108(10):1384-9. PubMed ID: 18550282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of CdTe quantum dot fluorescent microspheres in fluoro-immunoassays and a microfluidic chip system.
    Ma Q; Wang X; Li Y; Su X; Jin Q
    Luminescence; 2007; 22(5):438-45. PubMed ID: 17610307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A capillary flow-driven microfluidic system for microparticle-labeled immunoassays.
    Khodayari Bavil A; Kim J
    Analyst; 2018 Jul; 143(14):3335-3342. PubMed ID: 29878004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromosaic immunoassays.
    Bernard A; Michel B; Delamarche E
    Anal Chem; 2001 Jan; 73(1):8-12. PubMed ID: 11195515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling micropatterned antigen-antibody binding kinetics in a microfluidic chip.
    Hu G; Gao Y; Li D
    Biosens Bioelectron; 2007 Feb; 22(7):1403-9. PubMed ID: 16879959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-rabbit immunoglobulin G detection in complex medium by PM-RAIRS and QCM Influence of the antibody immobilisation method.
    Briand E; Salmain M; Compère C; Pradier CM
    Biosens Bioelectron; 2007 Jun; 22(12):2884-90. PubMed ID: 17229565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows.
    Lettieri GL; Dodge A; Boer G; de Rooij NF; Verpoorte E
    Lab Chip; 2003 Feb; 3(1):34-9. PubMed ID: 15100803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process.
    Temiz Y; Delamarche E
    Methods Mol Biol; 2017; 1547():25-36. PubMed ID: 28044284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.