BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11476250)

  • 1. On-wafer spectrofluorometric method for determination of relative quantum yields of photoacid generation in chemically amplified resists.
    Feke GD; Grober RD; Pohlers G; Moore K; Cameron JF
    Anal Chem; 2001 Jul; 73(14):3472-80. PubMed ID: 11476250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of acid generation from ionic photoacid generators for extreme ultraviolet and electron beam lithography.
    Fu C; Du K; Xue J; Xin H; Zhang J; Li H
    Phys Chem Chem Phys; 2024 May; ():. PubMed ID: 38805008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and performance of EUV resist containing photoacid generator for sub-100 nm lithography.
    Thiyagarajan M; Gonsalves KE; Dean K; Sykes CH
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1181-3. PubMed ID: 16108447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of hydrophilic photoacid generator on acid diffusion in chemical amplification resists.
    Kang HN; Jung JH; Joo HS; Seo DC; Lee H
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9662-4. PubMed ID: 25971116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of novel photoacid generator containing resist polymer for electron beam lithography.
    Lee KE; Kim MJ; Yool JB; Mondkar HS; Sohn K; Lee H
    J Nanosci Nanotechnol; 2012 Jan; 12(1):725-9. PubMed ID: 22524047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Acid Diffusion Control by Using Photoacid Generator Bound Polymer Resist.
    Jung JH; Kim MJ; Sohn KH; Kang HN; Kang MK; Lee H
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1764-6. PubMed ID: 26353729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Self-Contained Photoacid Generator System Based on Photochromic Terarylenes.
    Li R; Nakashima T; Kanazawa R; Galangau O; Kawai T
    Chemistry; 2016 Nov; 22(45):16250-16257. PubMed ID: 27677252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular Synthesis of Phthalaldehyde Derivatives Enabling Access to Photoacid Generator-Bound Self-Immolative Polymer Resists with Next-Generation Photolithographic Properties.
    Deng J; Bailey S; Jiang S; Ober CK
    J Am Chem Soc; 2022 Oct; 144(42):19508-19520. PubMed ID: 36208192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Mechanism-Based Descriptors for Extreme Ultraviolet-Induced Photoacid Generation: Key Factors Affecting Extreme Ultraviolet Sensitivity.
    Park JY; Song HJ; Nguyen TC; Son WJ; Kim D; Song G; Hong SK; Go H; Park C; Jang I; Kim DS
    Molecules; 2023 Aug; 28(17):. PubMed ID: 37687074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication.
    Zhou W; Kuebler SM; Braun KL; Yu T; Cammack JK; Ober CK; Perry JW; Marder SR
    Science; 2002 May; 296(5570):1106-9. PubMed ID: 12004126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-resolution optical measurement of nanoscale photoacid distribution in lithographic materials.
    Berro AJ; Berglund AJ; Carmichael PT; Kim JS; Liddle JA
    ACS Nano; 2012 Nov; 6(11):9496-502. PubMed ID: 23102414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, photophysical and photochemical properties of photoacid generators based on N-hydroxyanthracene-1,9-dicarboxyimide and their application toward modification of silicon surfaces.
    Ikbal M; Banerjee R; Atta S; Dhara D; Anoop A; Singh ND
    J Org Chem; 2012 Dec; 77(23):10557-67. PubMed ID: 23140622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosensitive polymeric materials for two-photon 3D WORM optical data storage systems.
    Yanez CO; Andrade CD; Yao S; Luchita G; Bondar MV; Belfield KD
    ACS Appl Mater Interfaces; 2009 Oct; 1(10):2219-29. PubMed ID: 20355856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloromethyl-modified Ru(ii) complexes enabling large pH jumps at low concentrations through photoinduced hydrolysis.
    Tian N; Sun W; Feng Y; Guo X; Lu J; Li C; Hou Y; Wang X; Zhou Q
    Chem Sci; 2019 Nov; 10(43):9949-9953. PubMed ID: 32190237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutron reflectivity characterization of the photoacid reaction-diffusion latent and developed images of molecular resists for extreme ultraviolet lithography.
    Prabhu VM; Kang S; Sha J; Bonnesen PV; Satija S; Wu WL; Ober CK
    Langmuir; 2012 May; 28(20):7665-78. PubMed ID: 22577835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Sensitivity Resists for EUV Lithography: A Review of Material Design Strategies and Performance Results.
    Manouras T; Argitis P
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32823865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Control of Photoacid Diffusion in Chemically Amplified Resist (CAR) via External Electric Field.
    Kim J; Yoo G; Park J; Park JH
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6001-6004. PubMed ID: 29677732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Chemically Amplified Positive Photoresist with Phenolic Resin Modified by GMA and BOC Protection.
    Liu J; Kang W
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Single-Component Molecular Glass Resist Based on Tetraphenylsilane Derivatives for Electron Beam Lithography.
    Wang Y; Yuan J; Chen J; Zeng Y; Yu T; Guo X; Wang S; Yang G; Li Y
    ACS Omega; 2023 Apr; 8(13):12173-12182. PubMed ID: 37033792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chemically amplified fullerene-derivative molecular electron-beam resist.
    Gibbons F; Zaid HM; Manickam M; Preece JA; Palmer RE; Robinson AP
    Small; 2007 Dec; 3(12):2076-80. PubMed ID: 18008296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.