These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11476250)

  • 21. A chemically amplified fullerene-derivative molecular electron-beam resist.
    Gibbons F; Zaid HM; Manickam M; Preece JA; Palmer RE; Robinson AP
    Small; 2007 Dec; 3(12):2076-80. PubMed ID: 18008296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoacid Generators for Biomedical Applications.
    Sun T; Kang L; Zhao H; Zhao Y; Gu Y
    Adv Sci (Weinh); 2024 Feb; 11(5):e2302875. PubMed ID: 38039443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of End-Cap Enabled Self-Immolative Photoresists For Extreme Ultraviolet Lithography.
    Deng J; Bailey S; Ai R; Delmonico A; Denbeaux G; Jiang S; Ober CK
    ACS Macro Lett; 2022 Sep; 11(9):1049-1054. PubMed ID: 35948019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laser-Induced CO
    Lee J; Jo SD; Chung H; Um W; Chandrasekar R; Choi YH; Shalaev VM; Won YY
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26084-26098. PubMed ID: 30011366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular layer deposition of functional thin films for advanced lithographic patterning.
    Zhou H; Bent SF
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):505-11. PubMed ID: 21302918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabricating a high-resolution mask with improved line-edge roughness by using a nonchemically amplified resist and a postexposure bake.
    Miyoshi H; Taniguchi J
    J Vac Sci Technol B Nanotechnol Microelectron; 2015 Nov; 33(6):06FD05. PubMed ID: 26594597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solid-state photoelectron transfer in powdery nanocomposites comprised of a sensitiser, photoacid generators and silica nanoparticles.
    Ichimura K; Horie S; Nagano S
    Phys Chem Chem Phys; 2011 Apr; 13(13):5974-80. PubMed ID: 21336400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of novel sulfonium photoacid generators and their microwave-assisted synthesis.
    Yanez CO; Andrade CD; Belfield KD
    Chem Commun (Camb); 2009 Feb; (7):827-9. PubMed ID: 19322455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-Contained Photoacid Generator Triggered by Photocyclization of Triangle Terarylene Backbone.
    Nakashima T; Tsuchie K; Kanazawa R; Li R; Iijima S; Galangau O; Nakagawa H; Mutoh K; Kobayashi Y; Abe J; Kawai T
    J Am Chem Soc; 2015 Jun; 137(22):7023-6. PubMed ID: 25992804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradability, cytotoxicity, and physicochemical treatability of two novel perfluorooctane sulfonate-free photoacid generators.
    Sun W; Gamez VM; Otero-Gonzalez L; Cho Y; Ober CK; Sierra-Alvarez R
    Arch Environ Contam Toxicol; 2013 Feb; 64(2):187-97. PubMed ID: 23104522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Focused laser spike (FLaSk) annealing of photoactivated chemically amplified resists for rapid hierarchical patterning.
    Singer JP; Kooi SE; Thomas EL
    Nanoscale; 2011 Jul; 3(7):2730-8. PubMed ID: 21503354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectroscopic characterization of coumarin-stained beads: quantification of the number of fluorophores per particle with solid-state 19F-NMR and measurement of absolute fluorescence quantum yields.
    Huber A; Behnke T; Würth C; Jaeger C; Resch-Genger U
    Anal Chem; 2012 Apr; 84(8):3654-61. PubMed ID: 22404690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of silicon wafer site flatness using dual heterodyne interferometers with sub-nanometer precision.
    Tahara K; Matsuoka H; Morioka N; Tsunaki H; Kannaka M; Kita T
    Rev Sci Instrum; 2020 Jun; 91(6):065114. PubMed ID: 32611054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Line edge roughness after development in a positive-tone chemically amplified resist of post-optical lithography investigated by Monte Carlo simulation and a dissolution model.
    Saeki A; Kozawa T; Tagawa S; Cao HB; Deng H; Leeson MJ
    Nanotechnology; 2008 Jan; 19(1):015705. PubMed ID: 21730546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EUV photofragmentation study of hybrid nonchemically amplified resists containing antimony as an absorption enhancer.
    Moura CADS; Belmonte GK; Reddy PG; Gonslaves KE; Weibel DE
    RSC Adv; 2018 Mar; 8(20):10930-10938. PubMed ID: 35541508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of triphenylsulfonium triflate bound copolymer for electron beam lithography.
    Kwon O; Sagar AD; Kang HN; Kim HM; Kim KB; Lee H
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6270-3. PubMed ID: 25936102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of Direct Analysis Real Time source/Time-of-Flight Mass Spectrometry for organophosphate quantitation on wafer surface.
    Hayeck N; Ravier S; Gemayel R; Gligorovski S; Poulet I; Maalouly J; Wortham H
    Talanta; 2015 Nov; 144():1163-70. PubMed ID: 26452942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exceptional Lithography Sensitivity Boosted by Hexafluoroisopropanols in Photoresists.
    Liu J; Wang D; Li Y; Wang H; Chen H; Wang Q; Kang W
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly sensitive, patternable organic films at the nanoscale made by bottom-up assembly.
    Zhou H; Blackwell JM; Lee HB; Bent SF
    ACS Appl Mater Interfaces; 2013 May; 5(9):3691-6. PubMed ID: 23594160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FT-IR study of a chemically amplified resist for X-ray lithography.
    Tan TL; Kudryashov VA; Tan BL
    Appl Spectrosc; 2003 Jul; 57(7):842-9. PubMed ID: 14658664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.