BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 11476488)

  • 21. Biodegradability of aged pyrene and phenanthrene in a natural soil.
    Hwang S; Cutright TJ
    Chemosphere; 2002 Jun; 47(9):891-9. PubMed ID: 12108695
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of nonionic surfactant on the solubilization and biodegradation of phenanthrene.
    Yang JG; Liu X; Long T; Yu G; Peng S; Zheng L
    J Environ Sci (China); 2003 Nov; 15(6):859-62. PubMed ID: 14758909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene.
    Vacca DJ; Bleam WF; Hickey WJ
    Appl Environ Microbiol; 2005 Jul; 71(7):3797-805. PubMed ID: 16000791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of desorption kinetics in the rhamnolipid-enhanced biodegradation of polycyclic aromatic hydrocarbons.
    Congiu E; Ortega-Calvo JJ
    Environ Sci Technol; 2014 Sep; 48(18):10869-77. PubMed ID: 25121829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of polyethoxylate lauryl ether (Brij 35) addition on phenanthrene biodegradation in a soil/water system.
    Chang YT; Hung CH; Chou HL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1672-84. PubMed ID: 25320854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solubilization and desorption of PAHs in soil-aqueous system by biosurfactants produced from Pseudomonas aeruginosa P-CG3 under thermophilic condition.
    Cheng KY; Zhao ZY; Wong JW
    Environ Technol; 2004 Oct; 25(10):1159-65. PubMed ID: 15551830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of surfactant addition on the biomineralization and microbial toxicity of phenanthrene.
    Bramwell DP; Laha S
    Biodegradation; 2000; 11(4):263-77. PubMed ID: 11432584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of soil phenanthrene degradation through a fungal-bacterial consortium.
    Luo C; Guan G; Dai Y; Cai X; Huang Q; Li J; Zhang G
    Appl Environ Microbiol; 2024 Jun; 90(6):e0066224. PubMed ID: 38752833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of biosurfactant on the diesel oil remediation in soil-water system.
    Li YY; Zheng XL; Li B
    J Environ Sci (China); 2006; 18(3):587-90. PubMed ID: 17294662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons.
    Aitken MD; Stringfellow WT; Nagel RD; Kazunga C; Chen SH
    Can J Microbiol; 1998 Aug; 44(8):743-52. PubMed ID: 9830104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions.
    Herman DC; Zhang Y; Miller RM
    Appl Environ Microbiol; 1997 Sep; 63(9):3622-7. PubMed ID: 9293014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene.
    Shin KH; Kim KW; Seagren EA
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):336-43. PubMed ID: 15309342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA stable isotope probing reveals contrasted activity and phenanthrene-degrading bacteria identity in a gradient of anthropized soils.
    Lemmel F; Maunoury-Danger F; Leyval C; Cébron A
    FEMS Microbiol Ecol; 2019 Dec; 95(12):. PubMed ID: 31730156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering
    Qin R; Xu T; Jia X
    Microbiol Spectr; 2022 Aug; 10(4):e0091022. PubMed ID: 35730952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons (PAHs) in soil-water systems.
    Yu H; Huang GH; Xiao H; Wang L; Chen W
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10536-49. PubMed ID: 24801290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.
    Zhao Z; Wong JW
    Environ Technol; 2009 Mar; 30(3):291-9. PubMed ID: 19438062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Indices for bioavailability and biotransformation potential of contaminants in soils.
    Braida WJ; White JC; Pignatello JJ
    Environ Toxicol Chem; 2004 Jul; 23(7):1585-91. PubMed ID: 15230309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergistic effect of thermophilic temperature and biosurfactant produced by Acinetobacter calcoaceticus BU03 on the biodegradation of phenanthrene in bioslurry system.
    Zhao Z; Selvam A; Wong JW
    J Hazard Mater; 2011 Jun; 190(1-3):345-50. PubMed ID: 21530078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system.
    Yu H; Huang GH; An CJ; Wei J
    J Hazard Mater; 2011 Jun; 190(1-3):883-90. PubMed ID: 21549504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of freeze-thawing cycles on desorption behaviors of PAH-contaminated soil in the presence of a biosurfactant: a case study in western Canada.
    Yao Y; Huang GH; An CJ; Cheng GH; Wei J
    Environ Sci Process Impacts; 2017 Jun; 19(6):874-882. PubMed ID: 28548173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.