BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 11476488)

  • 41. Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil?
    Semple KT; Dew NM; Doick KJ; Rhodes AH
    Environ Pollut; 2006 Mar; 140(1):164-72. PubMed ID: 16112779
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of loosely bound humic substances and humin in the bioavailability of phenanthrene aged in soil.
    Nam K; Kim JY
    Environ Pollut; 2002; 118(3):427-33. PubMed ID: 12009141
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Remediation of persistent organic pollutant-contaminated soil using biosurfactant-enhanced electrokinetics coupled with a zero-valent iron/activated carbon permeable reactive barrier.
    Sun Y; Gao K; Zhang Y; Zou H
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):28142-28151. PubMed ID: 29019041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rhamnolipid morphology and phenanthrene solubility at different pH values.
    Shin KH; Kim KW; Kim JY; Lee KE; Han SS
    J Environ Qual; 2008; 37(2):509-14. PubMed ID: 18268315
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation.
    Sun R; Belcher RW; Liang J; Wang L; Thater B; Crowley DE; Wei G
    J Environ Sci (China); 2015 Jul; 33():45-59. PubMed ID: 26141877
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Utilization of sorbed compounds by microorganisms specifically isolated for that purpose.
    Tang WC; White JC; Alexander M
    Appl Microbiol Biotechnol; 1998 Jan; 49(1):117-21. PubMed ID: 9487714
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil.
    Pacwa-Płociniczak M; Płaza GA; Poliwoda A; Piotrowska-Seget Z
    Environ Sci Pollut Res Int; 2014; 21(15):9385-95. PubMed ID: 24743958
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation and characterization of a novel phenanthrene (PHE) degrading strain Psuedomonas sp. USTB-RU from petroleum contaminated soil.
    Masakorala K; Yao J; Cai M; Chandankere R; Yuan H; Chen H
    J Hazard Mater; 2013 Dec; 263 Pt 2():493-500. PubMed ID: 24225588
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons.
    Li S; Pi Y; Bao M; Zhang C; Zhao D; Li Y; Sun P; Lu J
    Mar Pollut Bull; 2015 Dec; 101(1):219-225. PubMed ID: 26494247
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome analysis for the identification of genes involved in phenanthrene biodegradation pathway in
    Lara-Moreno A; Merchán F; Morillo E; Zampolli J; Di Gennaro P; Villaverde J
    Front Bioeng Biotechnol; 2023; 11():1158177. PubMed ID: 37214282
    [TBL] [Abstract][Full Text] [Related]  

  • 51. "Humic coverage index" as a determining factor governing strain-specific hydrocarbon availability to contaminant-degrading bacteria in soils.
    Bogan BW; Sullivan WR; Cruz KH; Paterek JR; Ravikovitch PI; Neimark AV
    Environ Sci Technol; 2003 Nov; 37(22):5168-74. PubMed ID: 14655703
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioavailability and degradation of phenanthrene in compost amended soils.
    Puglisi E; Cappa F; Fragoulis G; Trevisan M; Del Re AA
    Chemosphere; 2007 Mar; 67(3):548-56. PubMed ID: 17125813
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production of rhamnolipids in solid-state cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils.
    Camilios Neto D; Meira JA; Tiburtius E; Zamora PP; Bugay C; Mitchell DA; Krieger N
    Biotechnol J; 2009 May; 4(5):748-55. PubMed ID: 19452471
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization-biodegradation process.
    Shin KH; Kim KW; Ahn Y
    J Hazard Mater; 2006 Oct; 137(3):1831-7. PubMed ID: 16787705
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant.
    Aşçi Y; Nurbaş M; Açikel YS
    J Hazard Mater; 2008 Jun; 154(1-3):663-73. PubMed ID: 18068293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3.
    Nie M; Yin X; Ren C; Wang Y; Xu F; Shen Q
    Biotechnol Adv; 2010; 28(5):635-43. PubMed ID: 20580808
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of activated carbon on microbial bioavailability of phenanthrene in soils.
    Yang Y; Hunter W; Tao S; Crowley D; Gan J
    Environ Toxicol Chem; 2009 Nov; 28(11):2283-8. PubMed ID: 19572767
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adsorption of phenanthrene on activated carbon increases mineralization rate by specific bacteria.
    Leglize P; Alain S; Jacques B; Corinne L
    J Hazard Mater; 2008 Mar; 151(2-3):339-47. PubMed ID: 17629618
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosurfactant- and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids.
    Garcia-Junco M; Gomez-Lahoz C; Niqui-Arroyo JL; Ortega-Calvo JJ
    Environ Sci Technol; 2003 Jul; 37(13):2988-96. PubMed ID: 12875405
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanisms regulating bioavailability of phenanthrene sorbed on a peat soil-origin humic substance.
    Yang Y; Shu L; Wang X; Xing B; Tao S
    Environ Toxicol Chem; 2012 Jul; 31(7):1431-7. PubMed ID: 22511468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.