These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11476497)

  • 1. Immobilization of cesium-137 and uranium in contaminated sediments using soil amendments.
    Seaman JC; Meehan T; Bertsch PM
    J Environ Qual; 2001; 30(4):1206-13. PubMed ID: 11476497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ treatment of metals in contaminated soils with phytate.
    Seaman JC; Hutchison JM; Jackson BP; Vulava VM
    J Environ Qual; 2003; 32(1):153-61. PubMed ID: 12549554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing in situ distribution coefficients and exchangeability of radiocaesium in freshwater sediments with laboratory predictions.
    De Koning A; Geelhoed-Bonouvrie PA; Comans RN
    Sci Total Environ; 2000 Jul; 257(1):29-35. PubMed ID: 10943900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate amendments for chemical immobilization of uranium in contaminated soil.
    Baker MR; Coutelot FM; Seaman JC
    Environ Int; 2019 Aug; 129():565-572. PubMed ID: 31174144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and retention of 137Cs in sediments at the Hanford Site, Washington.
    McKinley JP; Zeissler CJ; Zachara JM; Serne RJ; Lindstrom RM; Schaef HT; Orr RD
    Environ Sci Technol; 2001 Sep; 35(17):3433-41. PubMed ID: 11563643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ uranium stabilization by microbial metabolites.
    Turick CE; Knox AS; Leverette CL; Kritzas YG
    J Environ Radioact; 2008 Jun; 99(6):890-9. PubMed ID: 18222573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of zeolite and vermiculite addition on exchangeable radiocaesium in soil with accelerated ageing.
    Yamaguchi N; Hikono A; Saito T
    J Environ Radioact; 2019 Jul; 203():18-24. PubMed ID: 30844680
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Yang G; Rahman MS; Tazoe H; Hu J; Shao Y; Yamada M
    Chemosphere; 2019 Jun; 225():388-394. PubMed ID: 30884300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The first use of (236)U in the general environment and near a shutdown nuclear power plant.
    Quinto F; Steier P; Wallner G; Wallner A; Srncik M; Bichler M; Kutschera W; Terrasi F; Petraglia A; Sabbarese C
    Appl Radiat Isot; 2009 Oct; 67(10):1775-80. PubMed ID: 19523838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention and chemical speciation of uranium in an oxidized wetland sediment from the Savannah River Site.
    Li D; Seaman JC; Chang HS; Jaffe PR; Koster van Groos P; Jiang DT; Chen N; Lin J; Arthur Z; Pan Y; Scheckel KG; Newville M; Lanzirotti A; Kaplan DI
    J Environ Radioact; 2014 May; 131():40-6. PubMed ID: 24238918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influences of organic carbon supply rate on uranium bioreduction in initially oxidizing, contaminated sediment.
    Tokunaga TK; Wan J; Kim Y; Daly RA; Brodie EL; Hazen TC; Herman D; Firestone MK
    Environ Sci Technol; 2008 Dec; 42(23):8901-7. PubMed ID: 19192816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions among phosphate amendments, microbes and uranium mobility in contaminated sediments.
    Knox AS; Brigmon RL; Kaplan DI; Paller MH
    Sci Total Environ; 2008 Jun; 395(2-3):63-71. PubMed ID: 18374392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption-desorption characteristics of uranium, cesium and strontium in typical podzol soils from Ukraine.
    Mishra S; Arae H; Zamostyan PV; Ishikawa T; Yonehara H; Sahoo SK
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):238-42. PubMed ID: 22929558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iodine-129 and caesium-137 in Chernobyl contaminated soil and their chemical fractionation.
    Hou XL; Fogh CL; Kucera J; Andersson KG; Dahlgaard H; Nielsen SP
    Sci Total Environ; 2003 Jun; 308(1-3):97-109. PubMed ID: 12738204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of temperature on Cs+ sorption and desorption in subsurface sediments at the Hanford Site, U.S.A.
    Liu C; Zachara JM; Qafoku O; Smith SC
    Environ Sci Technol; 2003 Jun; 37(12):2640-5. PubMed ID: 12854700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of uranium interactions with hydroxyapatite: implications for groundwater remediation.
    Fuller CC; Bargar JR; Davis JA; Piana MJ
    Environ Sci Technol; 2002 Jan; 36(2):158-65. PubMed ID: 11827049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloid-facilitated transport of cesium in variably saturated Hanford sediments.
    Chen G; Flury M; Harsh JB; Lichtner PC
    Environ Sci Technol; 2005 May; 39(10):3435-42. PubMed ID: 15952347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding strength-associated toxicity reduction by birnessite and hydroxyapatite in Pb and Cd contaminated sediments.
    Lee S; An J; Kim YJ; Nam K
    J Hazard Mater; 2011 Feb; 186(2-3):2117-22. PubMed ID: 21255927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plutonium,
    Hirose K; Kikawada Y; Igarashi Y; Fujiwara H; Jugder D; Matsumoto Y; Oi T; Nomura M
    J Environ Radioact; 2017 Jan; 166(Pt 1):97-103. PubMed ID: 26830016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ mobilization of colloids and transport of cesium in Hanford sediments.
    Flury M; Mathison JB; Harsh JB
    Environ Sci Technol; 2002 Dec; 36(24):5335-41. PubMed ID: 12521158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.