These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11477305)

  • 41. Geometry of proximal femur in the prediction of hip fracture in osteoporotic women.
    Gnudi S; Ripamonti C; Gualtieri G; Malavolta N
    Br J Radiol; 1999 Aug; 72(860):729-33. PubMed ID: 10624337
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Predictive ability of novel volumetric and geometric indices derived from dual-energy X-ray absorptiometric images of the proximal femur for hip fracture compared with conventional areal bone mineral density: the Japanese Population-based Osteoporosis (JPOS) Cohort Study.
    Iki M; Winzenrieth R; Tamaki J; Sato Y; Dongmei N; Kajita E; Kouda K; Yura A; Tachiki T; Kamiya K; Kagamimori S
    Osteoporos Int; 2021 Nov; 32(11):2289-2299. PubMed ID: 34041560
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Linear densitometry and digital image processing of proximal femur radiographs: implications for archaeological and forensic anthropology.
    Macchiarelli R; Bondioli L
    Am J Phys Anthropol; 1994 Jan; 93(1):109-22. PubMed ID: 8141239
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A preliminary dual-energy X-ray absorptiometry-based finite element model for assessing osteoporotic hip fracture risk.
    Luo Y; Ferdous Z; Leslie WD
    Proc Inst Mech Eng H; 2011 Dec; 225(12):1188-95. PubMed ID: 22320058
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessment of hip fracture risk by cross-sectional strain-energy derived from image-based beam model.
    Luo Y; Yang H
    Clin Biomech (Bristol, Avon); 2019 Mar; 63():48-53. PubMed ID: 30831432
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bone mineral density of the hip measured with dual-energy X-ray absorptiometry in normal elderly women and in patients with hip fracture.
    Duboeuf F; Braillon P; Chapuy MC; Haond P; Hardouin C; Meary MF; Delmas PD; Meunier PJ
    Osteoporos Int; 1991 Sep; 1(4):242-9. PubMed ID: 1790411
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia.
    Bouxsein ML; Coan BS; Lee SC
    Bone; 1999 Jul; 25(1):49-54. PubMed ID: 10423021
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In-vivo assessment of femoral bone strength using Finite Element Analysis (FEA) based on routine MDCT imaging: a preliminary study on patients with vertebral fractures.
    Liebl H; Garcia EG; Holzner F; Noel PB; Burgkart R; Rummeny EJ; Baum T; Bauer JS
    PLoS One; 2015; 10(2):e0116907. PubMed ID: 25723187
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biomechanical evaluation of dual-energy X-ray absorptiometry for predicting fracture loads of the infant femur for injury investigation: an in vitro porcine model.
    Pierce MC; Valdevit A; Anderson L; Inoue N; Hauser DL
    J Orthop Trauma; 2000 Nov; 14(8):571-6. PubMed ID: 11149504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS Prospective Study.
    Schott AM; Cormier C; Hans D; Favier F; Hausherr E; Dargent-Molina P; Delmas PD; Ribot C; Sebert JL; Breart G; Meunier PJ
    Osteoporos Int; 1998; 8(3):247-54. PubMed ID: 9797909
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using Radon transform of standard radiographs of the hip to differentiate between post-menopausal women with and without fracture of the proximal femur.
    Boehm HF; Lutz J; Körner M; Mutschler W; Reiser M; Pfeifer KJ
    Osteoporos Int; 2009 Feb; 20(2):323-33. PubMed ID: 18560746
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Perspectives on the non-invasive evaluation of femoral strength in the assessment of hip fracture risk.
    Bouxsein ML; Zysset P; Glüer CC; McClung M; Biver E; Pierroz DD; Ferrari SL;
    Osteoporos Int; 2020 Mar; 31(3):393-408. PubMed ID: 31900541
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bone mineral density averaged over a region of interest on femur is affected by age-related change of bone geometry.
    Luo Y
    Osteoporos Int; 2018 Jun; 29(6):1419-1425. PubMed ID: 29508039
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanical torque measurement for in vivo quantification of bone strength in the proximal femur.
    Mueller MA; Hengg C; Hirschmann M; Schmid D; Sprecher C; Audigé L; Suhm N
    Injury; 2012 Oct; 43(10):1712-7. PubMed ID: 22795727
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Association of 3D Geometric Measures Derived From Quantitative Computed Tomography With Hip Fracture Risk in Older Men.
    Borggrefe J; de Buhr T; Shrestha S; Marshall LM; Orwoll E; Peters K; Black DM; Glüer CC;
    J Bone Miner Res; 2016 Aug; 31(8):1550-8. PubMed ID: 26916713
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength.
    Lang TF; Keyak JH; Heitz MW; Augat P; Lu Y; Mathur A; Genant HK
    Bone; 1997 Jul; 21(1):101-8. PubMed ID: 9213015
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The combination of structural parameters and areal bone mineral density improves relation to proximal femur strength: an in vitro study with high-resolution peripheral quantitative computed tomography.
    Hansen S; Jensen JE; Ahrberg F; Hauge EM; Brixen K
    Calcif Tissue Int; 2011 Oct; 89(4):335-46. PubMed ID: 21874544
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women.
    Gnudi S; Ripamonti C; Lisi L; Fini M; Giardino R; Giavaresi G
    Osteoporos Int; 2002 Jan; 13(1):69-73. PubMed ID: 11878458
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrasound and densitometry of the calcaneus correlate with the failure loads of cadaveric femurs.
    Bouxsein ML; Courtney AC; Hayes WC
    Calcif Tissue Int; 1995 Feb; 56(2):99-103. PubMed ID: 7736330
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proximal Cadaveric Femur Preparation for Fracture Strength Testing and Quantitative CT-based Finite Element Analysis.
    Dragomir-Daescu D; Rezaei A; Uthamaraj S; Rossman T; Bronk JT; Bolander M; Lambert V; McEligot S; Entwistle R; Giambini H; Jasiuk I; Yaszemski MJ; Lu L
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.