BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 11478379)

  • 21. Influence of pH on the MI-MII equilibrium of rhodopsin in recombinant membranes.
    Gibson NJ; Brown MF
    Biochem Biophys Res Commun; 1990 Jun; 169(3):1028-34. PubMed ID: 2363712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A role for phospholipid polyunsaturation in modulating membrane protein function.
    Litman BJ; Mitchell DC
    Lipids; 1996 Mar; 31 Suppl():S193-7. PubMed ID: 8729118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes.
    Parkes JH; Gibson SK; Liebman PA
    Biochemistry; 1999 May; 38(21):6862-78. PubMed ID: 10346908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate.
    Organisciak DT; Darrow RM; Jiang YL; Blanks JC
    Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2243-57. PubMed ID: 8843911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The activation of the cyclic-GMP phosphodiesterase via metarhodopsin I: a new model for vertebrate transduction.
    Deshpande S; Abrahamson EW
    Biochem Cell Biol; 1988 Sep; 66(9):979-85. PubMed ID: 2847765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of phosphatidylserine in the MI-MII equilibrium of rhodopsin.
    Gibson NJ; Brown MF
    Biochem Biophys Res Commun; 1991 Apr; 176(2):915-21. PubMed ID: 2025300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of cholesterol in rod outer segment membranes.
    Albert AD; Boesze-Battaglia K
    Prog Lipid Res; 2005; 44(2-3):99-124. PubMed ID: 15924998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of membrane proteins by dietary lipids: effects of cholesterol and docosahexaenoic acid acyl chain-containing phospholipids on rhodopsin stability and function.
    Bennett MP; Mitchell DC
    Biophys J; 2008 Aug; 95(3):1206-16. PubMed ID: 18424497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deoxylysolecithin and a new biphenyl detergent as solubilizing agents for bovine rhodopsin. Functional test by formation of metarhodopsin II and binding of G-protein.
    Schleicher A; Franke R; Hofmann KP; Finkelmann H; Welte W
    Biochemistry; 1987 Sep; 26(18):5908-16. PubMed ID: 3118952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhodopsin in dimyristoylphosphatidylcholine-reconstituted bilayers forms metarhodopsin II and activates Gt.
    Mitchell DC; Kibelbek J; Litman BJ
    Biochemistry; 1991 Jan; 30(1):37-42. PubMed ID: 1899020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II.
    Schleicher A; Kühn H; Hofmann KP
    Biochemistry; 1989 Feb; 28(4):1770-5. PubMed ID: 2719933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low docosahexaenoic acid levels in rod outer segments of rats with P23H and S334ter rhodopsin mutations.
    Anderson RE; Maude MB; McClellan M; Matthes MT; Yasumura D; LaVail MM
    Mol Vis; 2002 Sep; 8():351-8. PubMed ID: 12355064
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of G-protein-receptor interaction in amplified phosphodiesterase activation of retinal rods.
    Liebman PA; Sitaramayya A
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():215-25. PubMed ID: 6328918
    [No Abstract]   [Full Text] [Related]  

  • 34. Lipid-protein interactions mediate the photochemical function of rhodopsin.
    Wiedmann TS; Pates RD; Beach JM; Salmon A; Brown MF
    Biochemistry; 1988 Aug; 27(17):6469-74. PubMed ID: 3219348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and dynamics of polyunsaturated hydrocarbon chains in lipid bilayers-significance for GPCR function.
    Gawrisch K; Soubias O
    Chem Phys Lipids; 2008 May; 153(1):64-75. PubMed ID: 18396152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights from biophysical studies on the role of polyunsaturated fatty acids for function of G-protein coupled membrane receptors.
    Gawrisch K; Soubias O; Mihailescu M
    Prostaglandins Leukot Essent Fatty Acids; 2008; 79(3-5):131-4. PubMed ID: 19004627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial and temporal expression of AP-1 responsive rod photoreceptor genes and bZIP transcription factors during development of the rat retina.
    He L; Campbell ML; Srivastava D; Blocker YS; Harris JR; Swaroop A; Fox DA
    Mol Vis; 1998 Dec; 4():32. PubMed ID: 9873070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diets enriched in docosahexaenoic acid fail to correct progressive rod-cone degeneration (prcd) phenotype.
    Aguirre GD; Acland GM; Maude MB; Anderson RE
    Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2387-407. PubMed ID: 9344362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cholesterol versus cholesterol sulfate: effects on properties of phospholipid bilayers containing docosahexaenoic acid.
    Schofield M; Jenski LJ; Dumaual AC; Stillwell W
    Chem Phys Lipids; 1998 Sep; 95(1):23-36. PubMed ID: 9807808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disrupted Blood-Retina Lysophosphatidylcholine Transport Impairs Photoreceptor Health But Not Visual Signal Transduction.
    Lobanova ES; Schuhmann K; Finkelstein S; Lewis TR; Cady MA; Hao Y; Keuthan C; Ash JD; Burns ME; Shevchenko A; Arshavsky VY
    J Neurosci; 2019 Dec; 39(49):9689-9701. PubMed ID: 31676603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.