These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Comparative study of gene expression by cDNA microarray in human colorectal cancer tissues and normal mucosa. Bianchini M; Levy E; Zucchini C; Pinski V; Macagno C; De Sanctis P; Valvassori L; Carinci P; Mordoh J Int J Oncol; 2006 Jul; 29(1):83-94. PubMed ID: 16773188 [TBL] [Abstract][Full Text] [Related]
4. Upregulated expression of angiogenesis genes and down regulation of cell cycle genes in human colorectal cancer tissue determined by cDNA macroarray. Tsunoda T; Nakamura T; Ishimoto K; Yamaue H; Tanimura H; Saijo N; Nishio K Anticancer Res; 2001; 21(1A):137-43. PubMed ID: 11299727 [TBL] [Abstract][Full Text] [Related]
5. [Gene expression profile difference between colorectal cancer tissue and pericancerous mucosa by DNA microarray]. Han XY; Wei HB; Zheng ZH; Huang JL; Wei B; Hu BG Zhonghua Wei Chang Wai Ke Za Zhi; 2009 Jan; 12(1):77-81. PubMed ID: 19145511 [TBL] [Abstract][Full Text] [Related]
6. Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia. Kitahara O; Furukawa Y; Tanaka T; Kihara C; Ono K; Yanagawa R; Nita ME; Takagi T; Nakamura Y; Tsunoda T Cancer Res; 2001 May; 61(9):3544-9. PubMed ID: 11325815 [TBL] [Abstract][Full Text] [Related]
7. Differential gene expression profiles and identification of the genes relevant to clinicopathologic factors in colorectal cancer selected by cDNA array method in combination with principal component analysis. Tsunoda T; Koh Y; Koizumi F; Tsukiyama S; Ueda H; Taguchi F; Yamaue H; Saijo N; Nishio K Int J Oncol; 2003 Jul; 23(1):49-59. PubMed ID: 12792775 [TBL] [Abstract][Full Text] [Related]
8. Gene expression profiling of colorectal cancer and metastases divides tumours according to their clinicopathological stage. Koehler A; Bataille F; Schmid C; Ruemmele P; Waldeck A; Blaszyk H; Hartmann A; Hofstaedter F; Dietmaier W J Pathol; 2004 Sep; 204(1):65-74. PubMed ID: 15307139 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional targets of hepatocyte growth factor signaling and Ki-ras oncogene activation in colorectal cancer. Seiden-Long IM; Brown KR; Shih W; Wigle DA; Radulovich N; Jurisica I; Tsao MS Oncogene; 2006 Jan; 25(1):91-102. PubMed ID: 16158056 [TBL] [Abstract][Full Text] [Related]
10. The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. Hanrahan V; Currie MJ; Gunningham SP; Morrin HR; Scott PA; Robinson BA; Fox SB J Pathol; 2003 Jun; 200(2):183-94. PubMed ID: 12754739 [TBL] [Abstract][Full Text] [Related]
11. [Expression and significance of APC, beta-catenin, C-myc, and Cyclin D1 proteins in colorectal carcinoma]. Dai WB; Ren ZP; Chen WL; DU J; Shi Z; Tang DY Ai Zheng; 2007 Sep; 26(9):963-6. PubMed ID: 17927853 [TBL] [Abstract][Full Text] [Related]
12. Identification of AF17 as a downstream gene of the beta-catenin/T-cell factor pathway and its involvement in colorectal carcinogenesis. Lin YM; Ono K; Satoh S; Ishiguro H; Fujita M; Miwa N; Tanaka T; Tsunoda T; Yang KC; Nakamura Y; Furukawa Y Cancer Res; 2001 Sep; 61(17):6345-9. PubMed ID: 11522623 [TBL] [Abstract][Full Text] [Related]
13. Up-regulation of the ectodermal-neural cortex 1 (ENC1) gene, a downstream target of the beta-catenin/T-cell factor complex, in colorectal carcinomas. Fujita M; Furukawa Y; Tsunoda T; Tanaka T; Ogawa M; Nakamura Y Cancer Res; 2001 Nov; 61(21):7722-6. PubMed ID: 11691783 [TBL] [Abstract][Full Text] [Related]
14. Differential expression of Rac1 identifies its target genes and its contribution to progression of colorectal cancer. Gómez del Pulgar T; Bandrés E; Espina C; Valdés-Mora F; Pérez-Palacios R; García-Amigot F; García-Foncillas J; Lacal JC Int J Biochem Cell Biol; 2007; 39(12):2289-302. PubMed ID: 17766170 [TBL] [Abstract][Full Text] [Related]
15. Isolation of a novel human gene, APCDD1, as a direct target of the beta-Catenin/T-cell factor 4 complex with probable involvement in colorectal carcinogenesis. Takahashi M; Fujita M; Furukawa Y; Hamamoto R; Shimokawa T; Miwa N; Ogawa M; Nakamura Y Cancer Res; 2002 Oct; 62(20):5651-6. PubMed ID: 12384519 [TBL] [Abstract][Full Text] [Related]
16. Expression level of Wnt signaling components possibly influences the biological behavior of colorectal cancer in different age groups. Seidler HB; Utsuyama M; Nagaoka S; Takemura T; Kitagawa M; Hirokawa K Exp Mol Pathol; 2004 Jun; 76(3):224-33. PubMed ID: 15126105 [TBL] [Abstract][Full Text] [Related]
18. Analysis of progressively overexpressed genes in tumorigenesis of colorectal cancers using cDNA microarray. Wang JY; Yeh CS; Tzou WS; Hsieh JS; Chen FM; Lu CY; Yu FJ; Cheng TL; Huang TJ; Lin SR Oncol Rep; 2005 Jul; 14(1):65-72. PubMed ID: 15944769 [TBL] [Abstract][Full Text] [Related]
19. Development of a highly specialized cDNA array for the study and diagnosis of epithelial ovarian cancer. Sawiris GP; Sherman-Baust CA; Becker KG; Cheadle C; Teichberg D; Morin PJ Cancer Res; 2002 May; 62(10):2923-8. PubMed ID: 12019173 [TBL] [Abstract][Full Text] [Related]
20. Tissue microarray analysis of beta-catenin in colorectal cancer shows nuclear phospho-beta-catenin is associated with a better prognosis. Chung GG; Provost E; Kielhorn EP; Charette LA; Smith BL; Rimm DL Clin Cancer Res; 2001 Dec; 7(12):4013-20. PubMed ID: 11751495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]