BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 11478942)

  • 1. Identification of an expanded set of translationally active methionine analogues in Escherichia coli.
    Kiick KL; Weberskirch R; Tirrell DA
    FEBS Lett; 2001 Jul; 502(1-2):25-30. PubMed ID: 11478942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of methionine by Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Pelka H; Schulman LH; Brunie S
    Biochemistry; 1991 Oct; 30(40):9569-75. PubMed ID: 1911742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectivity and specificity of substrate binding in methionyl-tRNA synthetase.
    Datta D; Vaidehi N; Zhang D; Goddard WA
    Protein Sci; 2004 Oct; 13(10):2693-705. PubMed ID: 15388861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of analogues of methionine and methionyl adenylate to sample conformational changes during catalysis in Escherichia coli methionyl-tRNA synthetase.
    Crepin T; Schmitt E; Mechulam Y; Sampson PB; Vaughan MD; Honek JF; Blanquet S
    J Mol Biol; 2003 Sep; 332(1):59-72. PubMed ID: 12946347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli.
    Varshney U; RajBhandary UL
    J Bacteriol; 1992 Dec; 174(23):7819-26. PubMed ID: 1447148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The recognition of methionine analogues by Escherichia coli methionyl-transfer ribonucleic acid synthetase.
    Old JM; Jones DS
    Biochem Soc Trans; 1975; 3(5):659-60. PubMed ID: 1104390
    [No Abstract]   [Full Text] [Related]  

  • 7. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase.
    Old JM; Jones DS
    Biochem J; 1977 Aug; 165(2):367-73. PubMed ID: 336037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent methionylation of Escherichia coli methionyl-tRNA synthethase: identification of the labeled amino acid residues by matrix-assisted laser desorption-ionization mass spectrometry.
    Gillet S; Hountondji C; Schmitter JM; Blanquet S
    Protein Sci; 1997 Nov; 6(11):2426-35. PubMed ID: 9385645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo.
    Tanrikulu IC; Schmitt E; Mechulam Y; Goddard WA; Tirrell DA
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15285-90. PubMed ID: 19706454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affinity labeling of aminoacyl-tRNA synthetases with adenosine triphosphopyridoxal: probing the Lys-Met-Ser-Lys-Ser signature sequence as the ATP-binding site in Escherichia coli methionyl-and valyl-tRNA synthetases.
    Hountondji C; Schmitter JM; Fukui T; Tagaya M; Blanquet S
    Biochemistry; 1990 Dec; 29(51):11266-73. PubMed ID: 2271710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of β
    Nigro G; Bourcier S; Lazennec-Schurdevin C; Schmitt E; Marlière P; Mechulam Y
    J Struct Biol; 2020 Feb; 209(2):107435. PubMed ID: 31862305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single genomic copy of an engineered methionyl-tRNA synthetase enables robust incorporation of azidonorleucine into recombinant proteins in E. coli.
    Abdeljabbar DM; Klein TJ; Zhang S; Link AJ
    J Am Chem Soc; 2009 Dec; 131(47):17078-9. PubMed ID: 19894713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crucial role of an idiosyncratic insertion in the Rossman fold of class 1 aminoacyl-tRNA synthetases: the case of methionyl-tRNA synthetase.
    Fourmy D; Mechulam Y; Blanquet S
    Biochemistry; 1995 Dec; 34(48):15681-8. PubMed ID: 7495798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The synthetic/editing active site of an aminoacyl-tRNA synthetase: evidence for binding of thiols in the editing subsite.
    Jakubowski H
    Biochemistry; 1996 Jun; 35(25):8252-9. PubMed ID: 8679580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of residues involved in the binding of methionine by Escherichia coli methionyl-tRNA synthetase.
    Fourmy D; Mechulam Y; Brunie S; Blanquet S; Fayat G
    FEBS Lett; 1991 Nov; 292(1-2):259-63. PubMed ID: 1959615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ester and hydroxamate analogues of methionyl and isoleucyl adenylates as inhibitors of methionyl-tRNA and isoleucyl-tRNA synthetases.
    Lee J; Kang SU; Kim SY; Kim SE; Kang MK; Jo YJ; Kim S
    Bioorg Med Chem Lett; 2001 Apr; 11(8):961-4. PubMed ID: 11327600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intriguing cellular processing of a fluorinated amino acid during protein biosynthesis in Escherichia coli.
    Vaughan MD; Su Z; Daub E; Honek JF
    Org Biomol Chem; 2016 Sep; 14(38):8942-8946. PubMed ID: 27722405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy cost of translational proofreading in vivo. The aminoacylation of transfer RNA in Escherichia coli.
    Jakubowski H
    Ann N Y Acad Sci; 1994 Nov; 745():4-20. PubMed ID: 7530434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analogs of methionyl-tRNA synthetase substrates containing photolabile groups.
    Wetzel R; Söll D
    Nucleic Acids Res; 1977; 4(5):1681-94. PubMed ID: 331263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.