BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11479310)

  • 1. Regulation of the properties of the heme-NO complexes in nitric-oxide synthase by hydrogen bonding to the proximal cysteine.
    Couture M; Adak S; Stuehr DJ; Rousseau DL
    J Biol Chem; 2001 Oct; 276(41):38280-8. PubMed ID: 11479310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis for hyperactivity in tryptophan 409 mutants of neuronal NO synthase.
    Adak S; Wang Q; Stuehr DJ
    J Biol Chem; 2000 Jun; 275(23):17434-9. PubMed ID: 10747960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic characterization of five- and six-coordinate ferrous-NO heme complexes. Evidence for heme Fe-proximal cysteinate bond cleavage in the ferrous-NO adducts of the Trp-409Tyr/Phe proximal environment mutants of neuronal nitric oxide synthase.
    Voegtle HL; Sono M; Adak S; Pond AE; Tomita T; Perera R; Goodin DB; Ikeda-Saito M; Stuehr DJ; Dawson JH
    Biochemistry; 2003 Mar; 42(8):2475-84. PubMed ID: 12600215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proximal tryptophan in NO synthase controls activity by a novel mechanism.
    Adak S; Stuehr DJ
    J Inorg Biochem; 2001 Feb; 83(4):301-8. PubMed ID: 11293550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trp180 of endothelial NOS and Trp56 of bacterial saNOS modulate sigma bonding of the axial cysteine to the heme.
    Lang J; Driscoll D; Gélinas S; Rafferty SP; Couture M
    J Inorg Biochem; 2009 Jul; 103(7):1102-12. PubMed ID: 19539996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring second coordination sphere effects in nitric oxide synthase.
    McQuarters AB; Speelman AL; Chen L; Elmore BO; Fan W; Feng C; Lehnert N
    J Biol Inorg Chem; 2016 Dec; 21(8):997-1008. PubMed ID: 27686338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan 409 controls the activity of neuronal nitric-oxide synthase by regulating nitric oxide feedback inhibition.
    Adak S; Crooks C; Wang Q; Crane BR; Tainer JA; Getzoff ED; Stuehr DJ
    J Biol Chem; 1999 Sep; 274(38):26907-11. PubMed ID: 10480900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved tryptophan in nitric oxide synthase regulates heme-dioxy reduction by tetrahydrobiopterin.
    Wang ZQ; Wei CC; Ghosh S; Meade AL; Hemann C; Hille R; Stuehr DJ
    Biochemistry; 2001 Oct; 40(43):12819-25. PubMed ID: 11669618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The conserved Trp-Cys hydrogen bond dampens the "push effect" of the heme cysteinate proximal ligand during the first catalytic cycle of nitric oxide synthase.
    Lang J; Santolini J; Couture M
    Biochemistry; 2011 Nov; 50(46):10069-81. PubMed ID: 22023145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms.
    Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ
    Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximal effects in the modulation of nitric oxide synthase reactivity: a QM-MM study.
    Fernández ML; Martí MA; Crespo A; Estrin DA
    J Biol Inorg Chem; 2005 Oct; 10(6):595-604. PubMed ID: 16133202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in three kinetic parameters underpin the unique catalytic profiles of nitric-oxide synthases I, II, and III.
    Santolini J; Meade AL; Stuehr DJ
    J Biol Chem; 2001 Dec; 276(52):48887-98. PubMed ID: 11684690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic simulation model that describes catalysis and regulation in nitric-oxide synthase.
    Santolini J; Adak S; Curran CM; Stuehr DJ
    J Biol Chem; 2001 Jan; 276(2):1233-43. PubMed ID: 11038356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved tryptophan 457 modulates the kinetics and extent of N-hydroxy-L-arginine oxidation by inducible nitric-oxide synthase.
    Wang ZQ; Wei CC; Stuehr DJ
    J Biol Chem; 2002 Apr; 277(15):12830-7. PubMed ID: 11823464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic and kinetic analysis of the nitrosyl, carbonyl, and dioxy heme complexes of neuronal nitric-oxide synthase. The roles of substrate and tetrahydrobiopterin in oxygen activation.
    Ost TW; Daff S
    J Biol Chem; 2005 Jan; 280(2):965-73. PubMed ID: 15507439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of the heme proximal side residues tryptophan409 and tryptophan421 of neuronal nitric oxide synthase in the electron transfer reaction.
    Yumoto T; Sagami I; Daff S; Shimizu T
    J Inorg Biochem; 2000 Nov; 82(1-4):163-70. PubMed ID: 11132623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heme distortion modulated by ligand-protein interactions in inducible nitric-oxide synthase.
    Li D; Stuehr DJ; Yeh SR; Rousseau DL
    J Biol Chem; 2004 Jun; 279(25):26489-99. PubMed ID: 15066989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic intermediates of inducible nitric-oxide synthase stabilized by the W188H mutation.
    Sabat J; Egawa T; Lu C; Stuehr DJ; Gerfen GJ; Rousseau DL; Yeh SR
    J Biol Chem; 2013 Mar; 288(9):6095-106. PubMed ID: 23269673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromatic residues and neighboring Arg414 in the (6R)-5,6,7, 8-tetrahydro-L-biopterin binding site of full-length neuronal nitric-oxide synthase are crucial in catalysis and heme reduction with NADPH.
    Sagami I; Sato Y; Daff S; Shimizu T
    J Biol Chem; 2000 Aug; 275(34):26150-7. PubMed ID: 10846172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A conserved Val to Ile switch near the heme pocket of animal and bacterial nitric-oxide synthases helps determine their distinct catalytic profiles.
    Wang ZQ; Wei CC; Sharma M; Pant K; Crane BR; Stuehr DJ
    J Biol Chem; 2004 Apr; 279(18):19018-25. PubMed ID: 14976216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.