BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 11479329)

  • 1. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds.
    Tommasi F; Paciolla C; de Pinto MC; De Gara L
    J Exp Bot; 2001 Aug; 52(361):1647-54. PubMed ID: 11479329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.
    Saruhan N; Terzi R; Saglam A; Kadioglu A
    Biol Res; 2009; 42(3):315-26. PubMed ID: 19915740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo.
    Bønsager BC; Shahpiri A; Finnie C; Svensson B
    Phytochemistry; 2010 Oct; 71(14-15):1650-6. PubMed ID: 20727558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of storage temperature on viability, germination and antioxidant metabolism in Ginkgo biloba L. seeds.
    Tommasi F; Paciolla C; de Pinto MC; De Gara L
    Plant Physiol Biochem; 2006; 44(5-6):359-68. PubMed ID: 16889978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascorbate free radical reductase and ascorbate redox cycle in the human lens.
    Bando M; Obazawa H
    Jpn J Ophthalmol; 1988; 32(2):176-86. PubMed ID: 3184551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains.
    Haghjou MM; Shariati M; Smirnoff N
    Physiol Plant; 2009 Mar; 135(3):272-80. PubMed ID: 19236661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered HBK3 expression affects glutathione and ascorbate metabolism during the early phases of Norway spruce (Picea abies) somatic embryogenesis.
    Belmonte MF; Stasolla C
    Plant Physiol Biochem; 2009 Oct; 47(10):904-11. PubMed ID: 19570687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud.
    Liu Y; Wang X; Zeng G; Qu D; Gu J; Zhou M; Chai L
    Chemosphere; 2007 Aug; 69(1):99-107. PubMed ID: 17532363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A protective role for glutathione-dependent reduction of dehydroascorbic acid in lens epithelium.
    Sasaki H; Giblin FJ; Winkler BS; Chakrapani B; Leverenz V; Shu CC
    Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1804-17. PubMed ID: 7635655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots.
    Zaharieva TB; Abadía J
    Protoplasma; 2003 Jun; 221(3-4):269-75. PubMed ID: 12802634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascorbate system in plant development.
    Arrigoni O
    J Bioenerg Biomembr; 1994 Aug; 26(4):407-19. PubMed ID: 7844116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin).
    Washburn MP; Wells WW
    Biochemistry; 1999 Jan; 38(1):268-74. PubMed ID: 9890907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in low-molecular-weight thiol-disulphide redox couples are part of bread wheat seed germination and early seedling growth.
    Gerna D; Roach T; Stöggl W; Wagner J; Vaccino P; Limonta M; Kranner I
    Free Radic Res; 2017 Jun; 51(6):568-581. PubMed ID: 28580817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in oxygen-scavenging systems and membrane lipid peroxidation during maturation and ripening in blackberry.
    Wang SY; Jiao H
    J Agric Food Chem; 2001 Mar; 49(3):1612-9. PubMed ID: 11312904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential stress responses of antioxidative systems to drought in pendunculate oak (Quercus robur) and maritime pine (Pinus pinaster) grown under high CO(2) concentrations.
    Schwanz P; Polle A
    J Exp Bot; 2001 Jan; 52(354):133-43. PubMed ID: 11181722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced mitochondrial and ascorbate-glutathione activity after artificial ageing in soybean seed.
    Xin X; Tian Q; Yin G; Chen X; Zhang J; Ng S; Lu X
    J Plant Physiol; 2014 Jan; 171(2):140-7. PubMed ID: 24331429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox poise and metabolite changes in bread wheat seeds are advanced by priming with hot steam.
    Gerna D; Roach T; Arc E; Stöggl W; Limonta M; Vaccino P; Kranner I
    Biochem J; 2018 Dec; 475(23):3725-3743. PubMed ID: 30401685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial uptake and recycling of ascorbic acid.
    Li X; Cobb CE; Hill KE; Burk RF; May JM
    Arch Biochem Biophys; 2001 Mar; 387(1):143-53. PubMed ID: 11368176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds.
    Wojtyla Ł; Garnczarska M; Zalewski T; Bednarski W; Ratajczak L; Jurga S
    J Plant Physiol; 2006 Dec; 163(12):1207-20. PubMed ID: 16904793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced activity of galactono-1,4-lactone dehydrogenase and ascorbate-glutathione cycle in mitochondria from complex III deficient Arabidopsis.
    Zsigmond L; Tomasskovics B; Deák V; Rigó G; Szabados L; Bánhegyi G; Szarka A
    Plant Physiol Biochem; 2011 Aug; 49(8):809-15. PubMed ID: 21601466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.