BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11479347)

  • 1. Extracellular blockade of K(+) channels by TEA: results from molecular dynamics simulations of the KcsA channel.
    Crouzy S; Bernèche S; Roux B
    J Gen Physiol; 2001 Aug; 118(2):207-18. PubMed ID: 11479347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum mechanical calculations of charge effects on gating the KcsA channel.
    Kariev AM; Znamenskiy VS; Green ME
    Biochim Biophys Acta; 2007 May; 1768(5):1218-29. PubMed ID: 17336921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cation-pi interaction between extracellular TEA and an aromatic residue in potassium channels.
    Ahern CA; Eastwood AL; Lester HA; Dougherty DA; Horn R
    J Gen Physiol; 2006 Dec; 128(6):649-57. PubMed ID: 17130518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics of the KcsA K(+) channel in a bilayer membrane.
    Bernèche S; Roux B
    Biophys J; 2000 Jun; 78(6):2900-17. PubMed ID: 10827971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetraethylammonium binding to the outer mouth of the KcsA potassium channel: implications for ion permeation.
    Guidoni L; Carloni P
    J Recept Signal Transduct Res; 2002; 22(1-4):315-31. PubMed ID: 12503624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of the K+ lock-In and the Ba2+ binding sites in a voltage-gated calcium-modulated channel. Implications for survival of K+ permeability.
    Vergara C; Alvarez O; Latorre R
    J Gen Physiol; 1999 Sep; 114(3):365-76. PubMed ID: 10469727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ionization state and the conformation of Glu-71 in the KcsA K(+) channel.
    Bernèche S; Roux B
    Biophys J; 2002 Feb; 82(2):772-80. PubMed ID: 11806919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brownian dynamics theory for predicting internal and external blockages of tetraethylammonium in the KcsA potassium channel.
    Hoyles M; Krishnamurthy V; Siksik M; Chung SH
    Biophys J; 2008 Jan; 94(2):366-78. PubMed ID: 17872961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External tetraethylammonium as a molecular caliper for sensing the shape of the outer vestibule of potassium channels.
    Bretschneider F; Wrisch A; Lehmann-Horn F; Grissmer S
    Biophys J; 1999 May; 76(5):2351-60. PubMed ID: 10233054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of C-terminal protein domains and protein-lipid interactions on tetramerization and stability of the potassium channel KcsA.
    Molina ML; Encinar JA; Barrera FN; Fernández-Ballester G; Riquelme G; González-Ros JM
    Biochemistry; 2004 Nov; 43(47):14924-31. PubMed ID: 15554699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating a high affinity scorpion toxin receptor in KcsA-Kv1.3 chimeric potassium channels.
    Legros C; Pollmann V; Knaus HG; Farrell AM; Darbon H; Bougis PE; Martin-Eauclaire MF; Pongs O
    J Biol Chem; 2000 Jun; 275(22):16918-24. PubMed ID: 10828071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of intracellular block of the KcsA K+ channel by tetrabutylammonium: insights from X-ray crystallography, electrophysiology and replica-exchange molecular dynamics simulations.
    Faraldo-Gómez JD; Kutluay E; Jogini V; Zhao Y; Heginbotham L; Roux B
    J Mol Biol; 2007 Jan; 365(3):649-62. PubMed ID: 17070844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of external tetraethylammonium block of the KcsA potassium channel: molecular and Brownian dynamics studies.
    Bisset D; Chung SH
    Biochim Biophys Acta; 2008 Oct; 1778(10):2273-82. PubMed ID: 18582434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of tetraethylammonium ion block in the KcsA potassium channel.
    Luzhkov VB; Aqvist J
    FEBS Lett; 2001 Apr; 495(3):191-6. PubMed ID: 11334890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of TEA blockade in a model potassium channel.
    Lenaeus MJ; Vamvouka M; Focia PJ; Gross A
    Nat Struct Mol Biol; 2005 May; 12(5):454-9. PubMed ID: 15852022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-activity relationship for extracellular block of K+ channels by tetraalkylammonium ions.
    Luzhkov VB; Osterberg F; Aqvist J
    FEBS Lett; 2003 Nov; 554(1-2):159-64. PubMed ID: 14596932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid intracellular TEA block of the KcsA potassium channel.
    Kutluay E; Roux B; Heginbotham L
    Biophys J; 2005 Feb; 88(2):1018-29. PubMed ID: 15556975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional identification of ion binding sites at the internal end of the pore in Shaker K+ channels.
    Thompson J; Begenisich T
    J Physiol; 2003 May; 549(Pt 1):107-20. PubMed ID: 12665608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore mutations in Shaker K+ channels distinguish between the sites of tetraethylammonium blockade and C-type inactivation.
    Molina A; Castellano AG; López-Barneo J
    J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):361-7. PubMed ID: 9080366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splitting the two pore domains from TOK1 results in two cationic channels with novel functional properties.
    Saldaña C; Naranjo D; Coria R; Peña A; Vaca L
    J Biol Chem; 2002 Feb; 277(7):4797-805. PubMed ID: 11714706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.