These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 11479347)

  • 1. Extracellular blockade of K(+) channels by TEA: results from molecular dynamics simulations of the KcsA channel.
    Crouzy S; Bernèche S; Roux B
    J Gen Physiol; 2001 Aug; 118(2):207-18. PubMed ID: 11479347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum mechanical calculations of charge effects on gating the KcsA channel.
    Kariev AM; Znamenskiy VS; Green ME
    Biochim Biophys Acta; 2007 May; 1768(5):1218-29. PubMed ID: 17336921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cation-pi interaction between extracellular TEA and an aromatic residue in potassium channels.
    Ahern CA; Eastwood AL; Lester HA; Dougherty DA; Horn R
    J Gen Physiol; 2006 Dec; 128(6):649-57. PubMed ID: 17130518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics of the KcsA K(+) channel in a bilayer membrane.
    Bernèche S; Roux B
    Biophys J; 2000 Jun; 78(6):2900-17. PubMed ID: 10827971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetraethylammonium binding to the outer mouth of the KcsA potassium channel: implications for ion permeation.
    Guidoni L; Carloni P
    J Recept Signal Transduct Res; 2002; 22(1-4):315-31. PubMed ID: 12503624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of the K+ lock-In and the Ba2+ binding sites in a voltage-gated calcium-modulated channel. Implications for survival of K+ permeability.
    Vergara C; Alvarez O; Latorre R
    J Gen Physiol; 1999 Sep; 114(3):365-76. PubMed ID: 10469727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ionization state and the conformation of Glu-71 in the KcsA K(+) channel.
    Bernèche S; Roux B
    Biophys J; 2002 Feb; 82(2):772-80. PubMed ID: 11806919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brownian dynamics theory for predicting internal and external blockages of tetraethylammonium in the KcsA potassium channel.
    Hoyles M; Krishnamurthy V; Siksik M; Chung SH
    Biophys J; 2008 Jan; 94(2):366-78. PubMed ID: 17872961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External tetraethylammonium as a molecular caliper for sensing the shape of the outer vestibule of potassium channels.
    Bretschneider F; Wrisch A; Lehmann-Horn F; Grissmer S
    Biophys J; 1999 May; 76(5):2351-60. PubMed ID: 10233054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of C-terminal protein domains and protein-lipid interactions on tetramerization and stability of the potassium channel KcsA.
    Molina ML; Encinar JA; Barrera FN; Fernández-Ballester G; Riquelme G; González-Ros JM
    Biochemistry; 2004 Nov; 43(47):14924-31. PubMed ID: 15554699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating a high affinity scorpion toxin receptor in KcsA-Kv1.3 chimeric potassium channels.
    Legros C; Pollmann V; Knaus HG; Farrell AM; Darbon H; Bougis PE; Martin-Eauclaire MF; Pongs O
    J Biol Chem; 2000 Jun; 275(22):16918-24. PubMed ID: 10828071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of intracellular block of the KcsA K+ channel by tetrabutylammonium: insights from X-ray crystallography, electrophysiology and replica-exchange molecular dynamics simulations.
    Faraldo-Gómez JD; Kutluay E; Jogini V; Zhao Y; Heginbotham L; Roux B
    J Mol Biol; 2007 Jan; 365(3):649-62. PubMed ID: 17070844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of external tetraethylammonium block of the KcsA potassium channel: molecular and Brownian dynamics studies.
    Bisset D; Chung SH
    Biochim Biophys Acta; 2008 Oct; 1778(10):2273-82. PubMed ID: 18582434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of tetraethylammonium ion block in the KcsA potassium channel.
    Luzhkov VB; Aqvist J
    FEBS Lett; 2001 Apr; 495(3):191-6. PubMed ID: 11334890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of TEA blockade in a model potassium channel.
    Lenaeus MJ; Vamvouka M; Focia PJ; Gross A
    Nat Struct Mol Biol; 2005 May; 12(5):454-9. PubMed ID: 15852022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-activity relationship for extracellular block of K+ channels by tetraalkylammonium ions.
    Luzhkov VB; Osterberg F; Aqvist J
    FEBS Lett; 2003 Nov; 554(1-2):159-64. PubMed ID: 14596932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid intracellular TEA block of the KcsA potassium channel.
    Kutluay E; Roux B; Heginbotham L
    Biophys J; 2005 Feb; 88(2):1018-29. PubMed ID: 15556975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional identification of ion binding sites at the internal end of the pore in Shaker K+ channels.
    Thompson J; Begenisich T
    J Physiol; 2003 May; 549(Pt 1):107-20. PubMed ID: 12665608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore mutations in Shaker K+ channels distinguish between the sites of tetraethylammonium blockade and C-type inactivation.
    Molina A; Castellano AG; López-Barneo J
    J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):361-7. PubMed ID: 9080366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splitting the two pore domains from TOK1 results in two cationic channels with novel functional properties.
    Saldaña C; Naranjo D; Coria R; Peña A; Vaca L
    J Biol Chem; 2002 Feb; 277(7):4797-805. PubMed ID: 11714706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.