BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 1147998)

  • 1. Enzymatic synthesis of labeled carbamyl- aspartic acid.
    Kidder GW; Nolan LL
    Biochem Biophys Res Commun; 1975 Jul; 65(1):420-6. PubMed ID: 1147998
    [No Abstract]   [Full Text] [Related]  

  • 2. Enzymatic syntheses of carbamyl phosphate, L-citrulline, and N-carbamyl L-aspartate labeled with either 13N or 11C.
    Gelbard AS; Kaseman DS; Rosenspire KC; Meister A
    Int J Nucl Med Biol; 1985; 12(3):235-42. PubMed ID: 3905667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catalytic mechanism of Escherichia coli aspartate carbamoyltransferase: a molecular modelling study.
    Gouaux JE; Krause KL; Lipscomb WN
    Biochem Biophys Res Commun; 1987 Feb; 142(3):893-7. PubMed ID: 3548720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bohr effect in Escherichia coli aspartate transcarbamylase. Linkages between substrate binding, proton binding, and conformational transitions.
    Allwell NM; Hofmann GE; Zaug A; Lennick M
    Biochemistry; 1979 Jul; 18(14):3008-15. PubMed ID: 37893
    [No Abstract]   [Full Text] [Related]  

  • 5. Wheat-germ aspartate transcarbamoylase. Steady-state kinetics and stereochemistry of the binding site for L-aspartate.
    Grayson JE; Yon RJ; Butterworth PJ
    Biochem J; 1979 Nov; 183(2):247-54. PubMed ID: 534495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional structure of carbamoyl phosphate and succinate bound to aspartate carbamoyltransferase.
    Gouaux JE; Lipscomb WN
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4205-8. PubMed ID: 3380787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the reaction catalyzed by the catalytic subunit of aspartate transcarbamylase. Kinetic studies with carbamyl phosphate as substrate.
    Heyde E; Nagabhushanam A; Morrison JF
    Biochemistry; 1973 Nov; 12(23):4718-26. PubMed ID: 4589945
    [No Abstract]   [Full Text] [Related]  

  • 8. DEAE paper chromatography to separate intermediates of the pyrimidine biosynthetic pathway and to assay asparatate transcarbamylase and dihydroorotase activities.
    Herrmann EC; Dunn JH; Schmidt RR
    Anal Biochem; 1973 Jun; 53(2):478-83. PubMed ID: 4716382
    [No Abstract]   [Full Text] [Related]  

  • 9. Kinetic mechanism of catalytic subunits (c3) of E. coli aspartate transcarbamylase at pH 7.0.
    Hsuanyu Y; Wedler FC
    Biochim Biophys Acta; 1988 Dec; 957(3):455-8. PubMed ID: 3058211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of de novo pyrimidine biosynthesis in mammalian tissues. Levels and turnover of early intermediates in mouse spleen in vivo.
    Hisata T; Tatibana M
    Eur J Biochem; 1980 Mar; 105(1):155-61. PubMed ID: 6154574
    [No Abstract]   [Full Text] [Related]  

  • 11. A kinetic model of cooperativity in aspartate transcarbamylase.
    Dembo M; Rubinow SI
    Biophys J; 1977 Jun; 18(3):245-67. PubMed ID: 329911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the essential arginine residue in Escherichia coli ornithine and aspartate transcarbamylases.
    Fortin AF; Hauber JM; Kantrowitz ER
    Biochim Biophys Acta; 1981 Nov; 662(1):8-14. PubMed ID: 7030401
    [No Abstract]   [Full Text] [Related]  

  • 13. Genetics and biochemistry of carbamoyl phosphate biosynthesis and its utilization in the pyrimidine biosynthetic pathway.
    Makoff AJ; Radford A
    Microbiol Rev; 1978 Jun; 42(2):307-28. PubMed ID: 353478
    [No Abstract]   [Full Text] [Related]  

  • 14. Determination of aspartate transcarbamylase by the radioassay of carbamyl 14C-aspartate separated by high-voltage paper electrophoresis.
    Ong BL; Jackson JF
    Anal Biochem; 1971 Jul; 42(1):289-93. PubMed ID: 5556417
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on channeling of carbamoyl-phosphate in the multienzyme complex that initiates pyrimidine biosynthesis in rat ascites hepatoma cells.
    Otsuki T; Mori M; Tatibana M
    J Biochem; 1982 Nov; 92(5):1431-7. PubMed ID: 6130083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 70-amino acid zinc-binding polypeptide fragment from the regulatory chain of aspartate transcarbamoylase causes marked changes in the kinetic mechanism of the catalytic trimer.
    Zhou BB; Waldrop GL; Lum L; Schachman HK
    Protein Sci; 1994 Jun; 3(6):967-74. PubMed ID: 8069226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolite distribution in cells.
    Davis RH
    Science; 1972 Nov; 178(4063):835-40. PubMed ID: 5085981
    [No Abstract]   [Full Text] [Related]  

  • 18. Radioassay of dihydroorotase utilizing ion-exchange chromatography.
    Christopherson RI; Matsuura T; Jones ME
    Anal Biochem; 1978 Aug; 89(1):225-34. PubMed ID: 30336
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulatory kinetics of wheat-germ aspartate transcarbamoylase. Adaptation of the concerted model to account for complex kinetic effects of uridine 5'-monophosphate.
    Yon RJ
    Biochem J; 1984 Jul; 221(2):281-7. PubMed ID: 6477473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for substrate stabilization in regulation of the degradation of Bacillus subtilis aspartate transcarbamylase in vivo.
    Hu P; Switzer RL
    Arch Biochem Biophys; 1995 Jan; 316(1):260-6. PubMed ID: 7840626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.